How to vectorize the evaluation of a kernel function.

4 次查看(过去 30 天)
I have a kernal function which is defined for . And now I have to compute a matrix for m points and n points , where K is given by . It is direct when using two for loop. But how can I vectorize the evaluation? For example, I tried
k_fun = @(x, y) 1 / norm(x - y);
d = 2; % Make d = 1 if you want it runs correctly.
m = 100;
n = 100;
x_points = rand(m, d);
y_points = rand(n, d);
% The following code is the two for loop version.
K = zeros(m, n);
for i = 1 : m
for j = 1 : n
K(i, j) = k_fun(x_points(i,:), y_points(j, :));
end
end
% The folloing code works when d = 1, but when d > 1 it failes.
K = k_fun(x_points, y_points');
% When d > 1, the error is "Arrays have incompatible sizes for this
% operation."
When , it gives the result I want, But for , it failes. How can I improve it?
  6 个评论
Jan
Jan 2022-12-5
@Jingyu: "I have told you the code will occur error" - yes, you did. Please insert the error message also in future questions.
While your code is vectorized already, you let the readers guess, what you want to achieve. All we know, is that your kernal function is "special" and the not working code.

请先登录,再进行评论。

采纳的回答

Matt J
Matt J 2022-11-27
K=1./pdist2(x_points,y_points);
  14 个评论

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Creating and Concatenating Matrices 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by