How can we find the intersection between two planes in higher dimensions (4d space and above)?

10 次查看(过去 30 天)
How can we find the intersection between two planes in higher dimensions (4d space and above)? For example we have the following 2 planes in 4d:
Plane 1
P1 =[252716585.970010 -136769230.769231 0 0];
P2 =[ -136769230.769231 252716585.970010 -136769230.769231 0];
P3= [0 -136769230.769231 252716585.970010 -136769230.769231];
P4 = [0 0 -136769230.769231 126358292.985005];
Plane 2
P11= [191269260.712188 -136769230.769231 0 0];
P22=[ -136769230.769231 259653876.096803 -136769230.769231 0];
P33= [0 -136769230.769231 259653876.096803 -136769230.769231];
P44=[0 0 -136769230.769231 129826938.048402];
  2 个评论
Matt J
Matt J 2023-2-6
It is more compact to describe the planes in equation form Aeq*x=beq. For plane 1, this would be
P1 =[252716585.970010 -136769230.769231 0 0];
P2 =[ -136769230.769231 252716585.970010 -136769230.769231 0];
P3= [0 -136769230.769231 252716585.970010 -136769230.769231];
P4 = [0 0 -136769230.769231 126358292.985005];
Aeq=null([P2;P3;P4]-P1)'
Aeq = 1×4
0.2420 0.4472 0.5843 0.6325
beq=Aeq*P1'
beq = -3.2783e-07
and similarly for plane 2.

请先登录,再进行评论。

采纳的回答

Matt J
Matt J 2023-2-6
编辑:Matt J 2023-2-6
In general, intersections of two hyperplanes would be expressed algebraically by a 2xN set of linear equations Aeq*x=beq. A geometric description can be made in terms of an origin vector, which gives the position of some point in the intersection space, and a set of direction vectors which span the linear space parallel to it. Example:
Aeq=[1,2,3,4;
5,6,7,8];
beq=[5;7];
assert( rank([Aeq,beq])==rank(Aeq) , 'Hyperplanes do not intersect')
origin = pinv(Aeq)*beq
origin = 4×1
-1.0000 -0.2500 0.5000 1.2500
directions = null(Aeq)
directions = 4×2
-0.4001 -0.3741 0.2546 0.7970 0.6910 -0.4717 -0.5455 0.0488
  9 个评论
M
M 2023-6-17
Hello @Matt J, could you please tell me based on what you programed these two lines in your code:
origin = pinv(Aeq)*beq
directions = null(Aeq)
Could you please elaborate them?
Thanks
Torsten
Torsten 2023-6-17
编辑:Torsten 2023-6-17
The complete set of solutions of a linear systems of equations (interpreted as the intersection of the hyperplanes) is given by one solution of the inhomogeneous system (origin) + the solutions of the homogeneous system (directions).
Read the last two paragraphs (Homogeneous solution set, Relation to nonhomogeneous systems) under

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Symbolic Math Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by