Algorithm for comparing Hand drawn alphabets and digits with printed standard alphabets and digits.
2 次查看(过去 30 天)
显示 更早的评论
Hi,
My problem objective is to compare the Hand drawn alphabets(A-Z and a-z) and digits(0-9) with that of the absolute printed standard references to get the score that how closely user has drawn the particular digit. I am familiar with Image processing and previously I did the template matching using Normalized Cross correlation but NCC will not be so much effective in this case due to deformation of an image. So I was trying to play with contours matching but still I am not getting any good thing..... can anyone suggest me the algorithm to cope with this problem.....!!!!!
Thanks in advance.
0 个评论
采纳的回答
Kosai
2012-3-20
The most effective method to do OCR is Neural Network, if you have the nn-toolbox you can find under the documentation-application's part a very intuitive description and example about Characters Recognition.
更多回答(2 个)
Image Analyst
2012-3-20
Start your research here: http://iris.usc.edu/Vision-Notes/bibliography/contentschar.html#OCR,%20Document%20Analysis%20and%20Character%20Recognition%20Systems There are dozens of papers there and I'm sure someone has tackled that problem before.
Greg Heath
2012-3-21
If you decide to use a feedforward neural network, use 62 output nodes to indicate the assigned class of the input. The target matrices for training should be columns of the 62 dimensional unit matrix eye(62) with the row containing the "1" indicating the index of the true class of the training input.
Using PURELIN, LOGSIG or SOFTMAX as the output layer activation function allows the 62 dimensional output vector to represent an approximation to the class posterior probabilities, conditional on the input.
Therefore, the maximum output value can be used as a measure of similarity.
Hope this helps.
Greg
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!