I want a whole code for solving the Blasius equation(similarity variable 'eta') using shooting method with Runge Kutta 4th order numerical technique
18 次查看(过去 30 天)
显示 更早的评论
I tried to write a brief code for the Blasius equation but I am unable to proceed further, it will be helpful if improvements are done in the code that I have written
% f'''+1/2*f*f''=0
% converting to 3 1st order odes
% f'=G
% G'=H= f''
% H'= -1/2*f*H = f'''
clc;
close all;
h=0.01; % step size
F1=@(eta,f,G,H) G;
F2=@(eta,f,G,H) H;
F3=@(eta,f,G,H) -1/2*f*H;
%initial conditions
eta(1)=0;
f(1)=0;
G(1)=0;
%initial guess
H(1)= 0.332;
N=10/h; % eta ranges from 0 to 10
for i=1:N
eta(i+1)= eta(i)+h;
k1= F1(f(i), G(i), H(i), eta(i));
l1= F2(f(i), G(i), H(i), eta(i));
m1= F3(f(i), G(i), H(i), eta(i));
k2= F1(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
l2= F2(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
m2= F3(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
k3= F1(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
l3= F2(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
m3= F3(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
k4= F1(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
l4= F2(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
m4= F3(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
f(i+1)= f(i)+ h/6*(k1+2*(k2+k3)+k4);
G(i+1)= G(i)+ h/6*(l1+2*(l2+l3)+l4);
H(i+1)= H(i)+ h/6*(m1+2*(m2+m3)+m4);
end
plot(eta,f,'r')
hold on
plot(eta,G,'b')
hold on
plot(eta,H,'g')
3 个评论
Nainaru Tarakaramu
2018-6-19
i want code for three dimensional graph plotting using shooting technique with Runge-kutta method
采纳的回答
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!