integer strings decoding ... speed optimization

2 次查看(过去 30 天)
I have the following problem:
I need decode integer sequences "c" to char string messages "m" by following association:
numpos = 10 % ( = size(c,2)/2)
c = [3 4 1 1 4 2 5 2 3 3,1 1 1 1 2 2 2 3 3 3]
Each row of "c" represents 2*numpos integers, where first numpos parameters encoded position of
types = {'a' 'b@2' 'c@6' 'd@10' 'e@11'}
and second numpos parameters are applied only if type contains character '@' like this:
m = ' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'
My current solution is as follows:
function m = c2m(c,types)
numpos = size(c,2)/2;
F = cellfun(@(f) [' ' f], strrep(types,'@',':%d@'),'unif',0);
m = arrayfun(@(f,k) sprintf(f{1},k),F(c(:,1:numpos)),c(:,numpos+(1:numpos)),'unif', 0);
m = arrayfun(@(i) horzcat(m{i,:}), (1:numlines)', 'unif', 0)
end
and the testing code is as follows:
numlines = 10;
c = repmat([3 4 1 1 4 2 5 2 3 3,1 1 1 1 2 2 2 3 3 3],numlines,1);
types = {'a' 'b@2' 'c@6' 'd@10' 'e@11'};
m = c2m(c,types);
m =
10×1 cell array
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
{' c:1@6 d:1@10 a a d:2@10 b:2@2 e:2@11 b:3@2 c:3@6 c:3@6'}
The code is still too slow for me, I am looking for any speed up. In this case the most significant fraction of CPU time is spent at built-in function "sprintf".
Typical realistic sizes of problem are:
numpos ~ 30 ... 60
numlines ~ 1e4 ... 1e5
Any idea?

采纳的回答

Michal
Michal 2017-11-15
编辑:Michal 2017-11-15
Probably fastest and simplest solution, I found so far ... using latest new Matlab (>= R2016b) features, see function insertBefore and string datatype.
function m = c2m(c,types)
types = string(types);
numpos = size(c,2)/2;
a = c(:,1:numpos);
b = c(:,(numpos+1):end);
m = types(a);
m = insertBefore(m,"@", ":" + b);
m = join(m,2);
end
  2 个评论
Jan
Jan 2017-11-15
Does this consider that some types as "a" do not get an element of b?
Michal
Michal 2017-11-15
I am not sure, what do you mean exactly. Please clarify your question.

请先登录,再进行评论。

更多回答(1 个)

Jan
Jan 2017-11-13
编辑:Jan 2017-11-13
[EDITED] Consider all rows of c:
function m = c2m(c,types)
[s1, s2] = size(c);
numpos = s2 / 2;
m = cell(s1, 1);
typesF = strrep(types, '@', ':%d@'); % types to format specifiers
hasNum = ~strcmp(types, typesF); % true if the type has a '%d'
for im = 1:s1
c1 = c(im, 1:numpos);
c2 = c(im, numpos+1:end);
FmtSpec = sprintf(' %s', typesF{c1}); % Complete list of format specs
m{im} = sprintf(FmtSpec, c2(hasNum(c1))); % All c2, if c1 has a number spec
end
end
UNTESTED - I have no Matlab currently.
  4 个评论
Michal
Michal 2017-11-14
编辑:Michal 2017-11-14
FmtSpec = CStr2String(typesF{c1}, ' ', 'noTrail');
should be
FmtSpec = CStr2String(typesF(c1), ' ', 'noTrail');
But the speed up with MEX file is only about a few percent.
Michal
Michal 2017-11-14
编辑:Michal 2017-11-15
Jan, thanks a lot for your help. Your code is very good. Especially the fact, that the for-loop is possible to simple transform to parfor-loop to get some additional speed-up without any re-programming.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Support Vector Machine Regression 的更多信息

标签

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by