Problems solving cupled 2nd Order ODE with od45

1 次查看(过去 30 天)
Hello.
I am given the task of simulating the two-dimensional motion of a magnetic pendulum in the x-y-plane. The problem comes down in solving this system of cupled 2nd order ordinary differential equation:
x'' + R*x' + sum_{i=1}^3 (m_i-x)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*x == 0
y'' + R*y' + sum_{i=1}^3 (m_i-y)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*y == 0
Those eqations discribe the motion in the plane. I know i can use the method "ode45" to solve such a problem, given some initial values.
I have tried it a few times, but didn't came to a solution.
I hope someone can help me. (x',y') = 0 no initial velocity and position (x,y) could be anywhere.
GREETINGS
  4 个评论
Torsten
Torsten 2017-11-29
Why don't you just show what you have so far ?
Best wishes
Torsten.
Erik Kostic
Erik Kostic 2017-11-29
编辑:Torsten 2017-11-29
Hello Torsten
clear all, clc;
%%Constants
R = 0.2;
C = 0.3;
d = 0.5;
a = 1;
%%Position of magnets with input a,d > 0
mag1 = [ a/2, -sqrt(3)*a, -d];
mag2 = [-a/2, -sqrt(3)*a, -d];
mag3 = [ 0, sqrt(3)*a, -d];
%%Position of mass
pmp = [-10, -15, 0];
%%Velocity of mass
pmv = [ 0, 0, 0];
%%Acceleration of mass
pma = [ 0, 0, 0];
%%Matrix of trajectories
PMPos = zeros(3,1);
PMPos(:,1) = pmp;
%%ODE Solving
syms x(t) y(t)
ode1 = diff(x,t,2) + R*diff(x,t,1) - ( (mag1(1)-x)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(1)-x)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(1)-x)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*x == 0;
ode2 = diff(y,t,2) + R*diff(y,t,1) - ( (mag1(2)-y)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(2)-y)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(2)-y)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*y == 0;
odes = [ode1; ode2];
V = odeToVectorField(ode1);
M = matlabFunction(V,'vars', {'t','Y'});
Interval = [0 20];
Conditions = [0 0];
Solution = ode45(M,Interval,Conditions);

请先登录,再进行评论。

回答(2 个)

Torsten
Torsten 2017-11-29
M=@(t,y)[y(2);-R*y(2)+((mag1(1)-y(1))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3)+(mag2(1)-y(1))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3)+(mag3(1)-y(1))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) )-C*y(1);y(4);-R*y(4)+((mag1(2)-y(3))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3) +(mag2(2)-y(3))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3) +(mag3(2)-y(3))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) ) -C*y(3)];
Interval=[0 20];
Conditions = [x; dx/dt; y ; dy/dt] at t=0 ??
Solution = ode45(M,Interval,Conditions);
Best wishes
Torsten.
  6 个评论
Erik Kostic
Erik Kostic 2017-11-29
Hey Torsten, thank you very much you are a germ :D
Steven Lord
Steven Lord 2017-11-29
Consider specifying the 'OutputFcn' option in your ode45 call as part of the options structure created by the odeset function. There are a couple of output functions included with MATLAB (the description of the OutputFcn option on that documentation page lists them) and I suspect one of odeplot, odephas2, or odephas3 will be of use to you.

请先登录,再进行评论。


Dariusz Skibicki
Dariusz Skibicki 2023-3-16
Replace
V = odeToVectorField(ode1);
with
V = odeToVectorField(odes);

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

标签

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by