Exponential decay problem.
15 次查看(过去 30 天)
显示 更早的评论
Radioactive decay is modeled with the exponential function f(t)=f(0)e^(kt), where t is time, f(0) is the amount of material at t=0, f(t) is the amount of material at time t, k is a constant. If 100 mg are present at t=0, determine the amount that is left after 7 days. Material is Gallium-67, which has a half-life of 3.261 days. Write a script file for the problem. The program should first determine the constant k, then calculate f(7).
8 个评论
David Goodmanson
2018-10-30
For sure. I would round D7 to two decimal places giving you four significant figures, since the half life that was provided has four sig figs. Lots of people are using symbolic calculation now but in this case taking the log of both sides gives
1/2 = exp(k*t_half)
log(1/2) = k*t_half
k = log(1/2)/t_half
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Particle & Nuclear Physics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!