Draw the vector field and eigenvectors in the phase portrait for Van der Pol ODE

9 次查看(过去 30 天)
I have the follwing system which represent the Van der Pol oscillator with the inital condition and parameters are given. I draw the phase porrait using plot and ode45 but dont know how to draw the vector field and the eigenvectors with direction on them.
%function to solve the system with the time dependent term zero
function [dxdt] = vdp1(t,x,lambda,gamma,omega)
dxdt=zeros(2,1);
dxdt(1)=x(2);
dxdt(2)=lambda.*(1-x(1)^2)*x(2)-x(1)+gamma.*sin(omega*t);
end
%function to solve the system with the time dependent not zero
function [dxdt] = myode(t,x,gt,g,lambda,gamma,omega)
g=interp1(gt,g,t);
dxdt=zeros(2,1);
dxdt(1)=x(2);
dxdt(2)=lambda.*(1-x(1)^2)*x(2)-x(1)+g;
end
%script
lambda=[0.01 0.1 1 10 100] ;
gamma=[0 0.25];
omega=[0 1.04 1.1];
x0=[1 0];
x01=[3 0];
tspan=[0 500];
tspan1=[0 100];
%Numerical solution for the first initial value
[t,x]=ode45(@(t,x) vdp1(t,x,lambda(1),gamma(1),omega(1)),tspan,x0);
%Numerical solution for the second initial value
[t1,x1]=ode45(@(t,x) vdp1(t,x,lambda(1),gamma(1),omega(1)),tspan,x01);
%plotting x1,x2 aginst t
figure(3)
plot(x(:,1),x(:,2),'g-.')
hold on;
plot(x1(:,1),x1(:,2),'r-.')
xlabel('x1');
ylabel('x2')
legend('Solution first initial condition','Solution with the second initial condition')
title('phase portrait with t=[0 500] ,gamma=0,omega=0,lambda=0.01')
[tt1,xx1]=ode45(@(t,x) vdp1(t,x,lambda(2),gamma(1),omega(1)),tspan1,x0);
[tt2,xx2]=ode45(@(t,x) vdp1(t,x,lambda(3),gamma(1),omega(1)),tspan1,x0);
[tt3,xx3]=ode45(@(t,x) vdp1(t,x,lambda(4),gamma(1),omega(1)),tspan1,x0);
[tt4,xx4]=ode45(@(t,x) vdp1(t,x,lambda(5),gamma(1),omega(1)),tspan1,x0);
[tt11,xx11]=ode45(@(t,x) vdp1(t,x,lambda(2),gamma(1),omega(1)),tspan1,x01);
[tt22,xx22]=ode45(@(t,x) vdp1(t,x,lambda(3),gamma(1),omega(1)),tspan1,x01);
[tt33,xx33]=ode45(@(t,x) vdp1(t,x,lambda(4),gamma(1),omega(1)),tspan1,x01);
[tt44,xx44]=ode45(@(t,x) vdp1(t,x,lambda(5),gamma(1),omega(1)),tspan1,x01);
figure(6)
plot(xx1(:,1),xx1(:,2),'g-.')
hold on;
plot(xx11(:,1),xx11(:,2),'r-.')
xlabel('x1');
ylabel('x2')
legend('Solution first initial condition','Solution with the second initial condition')
title('phase portrait with t=[0 100] ,gamma=0,omega=0,lambda=0.1')
figure(8)
plot(xx2(:,1),xx2(:,2),'g-.')
hold on;
plot(xx22(:,1),xx22(:,2),'r-.')
xlabel('x1');
ylabel('x2')
legend('Solution first initial condition','Solution with the second initial condition')
title('phase portrait with t=[0 100] ,gamma=0,omega=0,lambda=1')
figure(10)
plot(xx3(:,1),xx3(:,2),'g-.')
hold on;
plot(xx33(:,1),xx33(:,2),'r-.')
xlabel('x1');
ylabel('x2')
legend('Solution first initial condition','Solution with the second initial condition')
title('phase portrait with t=[0 100] ,gamma=0,omega=0,lambda=10')
figure(12)
plot(xx4(:,1),xx4(:,2),'g-.')
hold on;
plot(xx44(:,1),xx44(:,2),'r-.')
xlabel('x1');
ylabel('x2')
legend('Solution first initial condition','Solution with the second initial condition')
title('phase portrait with t=[0 100] ,gamma=0,omega=0,lambda=100')
gt=[0 500];
g=gamma(2).*sin(omega(2).*gt);
g1=gamma(2).*sin(omega(3).*gt);
opts = odeset('RelTol',1e-2,'AbsTol',1e-4);
[t2,x2]=ode45(@(t,x) myode(t,x,gt,g,lambda(1),gamma(2),omega(2)),tspan,x0,opts);
[t22,x22]=ode45(@(t,x) myode(t,x,gt,g,lambda(1),gamma(2),omega(2)),tspan,x01,opts);
[t3,x3]=ode45(@(t,x) myode(t,x,gt,g,lambda(1),gamma(2),omega(3)),tspan,x0,opts);
[t33,x33]=ode45(@ (t,x) myode(t,x,gt,g1,lambda(1),gamma(2),omega(3)),tspan,x01,opts);
figure(14)
plot(x2(:,1),x2(:,2),'g-.')
hold on;
plot(x22(:,1),x22(:,2),'r-.')
xlabel('x1');
ylabel('x2')
legend('Solution first initial condition','Solution with the second initial condition')
title('phase portrait with t=[0 500] ,gamma=0.25,omega=1.04,lambda=0.01')
figure(16)
plot(x3(:,1),x3(:,2),'g-.')
hold on;
plot(x33(:,1),x33(:,2),'r-.')
xlabel('x1');
ylabel('x2')
legend('Solution first initial condition','Solution with the second initial condition')
title('phase portrait with t=[0 500] ,gamma=0.25,omega=1.1,lambda=0.01')
  9 个评论
F.O
F.O 2019-4-2
@Jan They restore my previous question ? which I replaced it by junk because no one would delet it.
Are you happy now?
Anyway I learned something here.

请先登录,再进行评论。

采纳的回答

Agnish Dutta
Agnish Dutta 2019-4-8
If you can calculate the vector field values at every point, then the resulting data can be plotted using the “quiver” function, the details of which are in the following document:
I also found a few useful resources on the internet pertinent to what you are trying to do. Refer to the “computing the vector field” section of the following website:
I believe that the following MATLAB answers page has an accepted answer relevant to your question:

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by