How can I loop over a binary image to get 4 equal quadrants always?
1 次查看(过去 30 天)
显示 更早的评论
I am following this steps to get 4 equal quadrants from a binary image:
r1=q1(1:size(q1,1)/2,1:size(q1,2)/2,:);
r2=q1(size(q1,1)/2+1:size(q1,1),1:size(q1,2)/2,:);
r3=q1(1:size(q1,1)/2,size(q1,2)/2+1:size(q1,2),:);
r4=q1(size(q1,1)/2+1:size(q1,1),size(q1,2)/2+1:size(q1,2),:);
After this, I want to get 4 equal quadrants from r1,r2,r3,r4 indivisually. This process will continue as long as we can get 4 equal quadrants . How can I simply do this with the help of any loop.
3 个评论
Walter Roberson
2019-4-17
To confirm: if the original image happened to be a power of 2 on each side, such as 512 x 512, then you would want the division into equal quadrants to continue right down to the point where the quadrant sizes were 1 x 1 ? But for a 513 x 513 matrix, then no sub-division would be done, since you cannot make equal quardrants ?
回答(2 个)
Jan
2019-4-17
编辑:Jan
2019-4-17
Using 4 distinct variables is less convenient than reshaping the array:
s = size(q1);
q2 = reshape(q1, s(1)/2, 2, s(2)/2, 2);
Now you have e.g. your r4 stored in q2(:, 2, :, 2). In general:
s = size(q1); % Assuming that q1 is a binary image ==> 2D!
% How often can the size be divided by 2:
n = min(sum(factor(s(1)) == 2), sum(factor(s(2)) == 2));
twos = repmat(2, 1, n);
div = 2^n;
qq = reshape(q1, [s(1) / div, twos, s(2) / div, twos]);
Perhaps you want to permute the array (you did not mention, what you need as output).
qq = permute(qq, [1, n+2, 2:n+1, n+3:2*n+2]);
% And maybe:
qq = reshape(qq, s(1)/div, s(2)/div, []);
Now qq(:, :, i) contains the i.th quadrant.
3 个评论
Walter Roberson
2019-4-17
function splitted = rsplit4(img)
[r, c, p] = size(img);
if mod(r,2) || mod(c,2)
splitted = img;
else
splitted = {rsplit4(img(1:end/2,1:end/2, :)), rsplit4(img(1:end/2,end/2+1:end, :));
rsplit4(img(end/2+1:end,1:end/2,:)), rsplit4(img(end/2+1:end,end/2+1:end,:))};
end
end
13 个评论
Walter Roberson
2019-4-17
So you have, in this example, an 80 x 160 image, and you want to sub-divide down to 10 x 10 ? It is not clear why you did not continue on to 5 x 5.
The centroid of the 80 x 160 would be at (40, 80), and the maximum horizontal or vertical distance from the centroid to the edge would be 80. Your previous requirements say that we must take an 80 x 80 square on each side of the centroid. However, with the centroid being at (40,80), we cannot take an 80x80 square to either side of it.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Matrix Indexing 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!