Hello, how to solve this equation E*I*k^4-m*v^2*k^2+2*m*v*w*k+(m+M)w^2=0 numerically where w is variable,
3 次查看(过去 30 天)
显示 更早的评论
can we solve this for k numerically, sorry this is fourth order equation not two order
Thanks
0 个评论
采纳的回答
Star Strider
2019-12-10
编辑:Star Strider
2019-12-10
Supply all the scalar parameters, then:
Eqn = @(w) E*I*k^2-m*v^2*k^2+2*m*v*w*k+(m+M)w^2;
w0 = 42;
[w,fval] = fsolve(Eqn, w0)
Experiment with the correct value of ‘w0’ to get the correct result.
EDIT — (Dec 10 2019 at 13:18)
The Symbolic Math Toolbox produces:
w = (k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)
or to calculate both roots:
w = [(k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)
-(k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)]
11 个评论
Walter Roberson
2019-12-12
syms E I k m v w M
Eqn = E*I*k^4-m*v^2*k^2+2*m*v*w*k+(m+M)*w^2
sol_exact = solve(Eqn, k, 'MaxDegree', 4); %valid for symbolic variables, gives LONG exact solutions
sol_numeric = vpasolve(Eqn, k); %valid only if numeric values are known for everything except k, gives numeric solutions
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!