Hello, how to solve this equation E*I*k^4-m*​v^2*k^2+2*​m*v*w*k+(m​+M)w^2=0 numerically where w is variable,

3 次查看(过去 30 天)
can we solve this for k numerically, sorry this is fourth order equation not two order
Thanks

采纳的回答

Star Strider
Star Strider 2019-12-10
编辑:Star Strider 2019-12-10
Supply all the scalar parameters, then:
Eqn = @(w) E*I*k^2-m*v^2*k^2+2*m*v*w*k+(m+M)w^2;
w0 = 42;
[w,fval] = fsolve(Eqn, w0)
Experiment with the correct value of ‘w0’ to get the correct result.
EDIT (Dec 10 2019 at 13:18)
The Symbolic Math Toolbox produces:
w = (k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)
or to calculate both roots:
w = [(k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)
-(k*(- E*I*k^2*m - E*I*M*k^2 + 2*m^2*v^2 + M*m*v^2)^(1/2) - k*m*v)/(M + m)]
  11 个评论
Walter Roberson
Walter Roberson 2019-12-12
syms E I k m v w M
Eqn = E*I*k^4-m*v^2*k^2+2*m*v*w*k+(m+M)*w^2
sol_exact = solve(Eqn, k, 'MaxDegree', 4); %valid for symbolic variables, gives LONG exact solutions
sol_numeric = vpasolve(Eqn, k); %valid only if numeric values are known for everything except k, gives numeric solutions

请先登录,再进行评论。

更多回答(0 个)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by