invert the function s = L(t) to solve for t.

1 次查看(过去 30 天)
syms t;
x(t)= sin(3*t^2)*(12*t + (10*13^(1/2))/13);
y(t)= t*(6*13^(1/2)*t + 5);
z(t)= cos(3*t^2)*(12*t + (10*13^(1/2))/13);
syms tau;
L(t) = vpaintegral(speed(tau), tau, 0, t);
syms s;
solve(s == L(t), t);
I'm trying to invert the function s = L(t) to solve for t, but I don't know how to change the function regarding as t.

回答(1 个)

SAI SRUJAN
SAI SRUJAN 2024-5-30
Hi Hyunji,
I understand that you are trying to invert the function 's=L(t)' to solve for 't'.
The speed '(v(t))' of a particle moving along a path in three-dimensional space is given by the magnitude of its velocity vector, which is the derivative of its position vector, then: ['v(t) = sqrt(dx^2 + dy^2 + dz^2);'].
Please go through the following code sample to proceed further,
syms s t tau;
x(t) = sin(3*t^2)*(12*t + (10*sqrt(13))/13);
y(t) = t*(6*sqrt(13)*t + 5);
z(t) = cos(3*t^2)*(12*t + (10*sqrt(13))/13);
dx = diff(x, t);
dy = diff(y, t);
dz = diff(z, t);
% Speed function v(t)
v(t) = sqrt(dx^2 + dy^2 + dz^2);
% Define L(t) as the integral of v(tau) from 0 to t
L(t) = int(v(tau), tau, 0, t);
tSol = vpasolve(s == L(t), t);
For a comprehensive understanding of the 'vpasolve' function in MATLAB, please refer to the following documentation.
I hope this helps!

类别

Help CenterFile Exchange 中查找有关 Symbolic Math Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by