solving coupled system of second order differential equations

10 次查看(过去 30 天)
Hello everyone,
I want to solve a "second order coupled ordinary differential equation". I searched a lot but could not find the solution.
Please suggest me how can I solve this.
The structure of my equation is given below,
[M]{x''} + [K]{x} = {F}
where [M], [K] are the matrices, which contain time dependent terms.
{x} vector of unknown dependent variables.
{x''} is the second derivative of the vector {x} with respect to time.
Please note that [M], [K] contains time varying terms
Looking forward for your the response.
Thanks for your time..
  4 个评论
Paul
Paul 2021-5-28
Do you have a simple example for M, K, and F? Preferably one that you know what that solution should be?
aakash dewangan
aakash dewangan 2021-5-30
M, K and F contains sinusoidal terms, which depend on time. Diagonal terms of M and K are in the form of a+sin(nwt), and non diagonal terms are like sin(nbt)*sin(nct). Where a,b,c,n are some constant parameters, and t is time.

请先登录,再进行评论。

采纳的回答

Sulaymon Eshkabilov
Hi,
You can employ ode solvers (ode23, ode23tb, ode45, ode113, etc) as suggested or write scripts using function handles or anonymous functions by apply Euler or Runge-Kutta methods.
  2 个评论
aakash dewangan
aakash dewangan 2021-5-28
Thanks Sulaymon,
But I am looking for Analytical solution. Can you suggest me how I can solve this using Analytical approach?
Sulaymon Eshkabilov
Should you need to obtain an analytical solution, then dsolve() of Symbolic MATH toolbox needs to be employed. E..g.:
syms x(t) Dx(t) DDx(t)
Dx = diff(x, t);
DDx = diff(Dx, t);
M = [??];
K = [??];
EQN = DDx==inv(M)*(F-K*x);
SOL = dsolve(EQN, x(0)==??, Dx(0)==??)
Good luck

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by