How to interpolate between two adjacent points of time series data, if the difference between any two consecutive points is greater than 25 by using for loop?
9 次查看(过去 30 天)
显示 更早的评论
I have a time series data like this;
x = [555 554 100 10 36 20 17 5 51 70 101 40 13];
and independent variables as follow
L = numel(x);
fs = 4;
t=0:1/fs:(L-1)/fs;
What I want is to use spline interpolation between two consecutive point of 'x' means (xi and xi+1) if the difference between two point is greater than 25. for example from the above time series abs(x4-x3)= 10-100= 90 therefore I want to interpolate between x3 and x4 with t interval of 0.05 and return all the new time series data by using a loop. The loop have to continue until the difference between every consecutive data in “x” becomes less than 25.
Thanks for your contribution in advance
2 个评论
J. Alex Lee
2021-5-26
Is there any reason you cannot just live with interpolating the whole curve with the new time interval?
采纳的回答
Jan
2021-5-26
编辑:Jan
2021-5-26
x = [555 554 100 10 36 20 17 5 51 70 101 40 13];
L = numel(x);
fs = 4;
t = 0:1/fs:(L-1)/fs;
ready = false;
dt = 0.05;
xx = x;
tt = t;
while ~ready
miss = find(abs(diff(xx)) > 25);
if isempty(miss)
ready = true;
else
% Insert new time values for gaps:
for k = numel(miss):-1:1
tt = [tt(1:miss(k)-1), ...
tt(miss(k)):dt:tt(miss(k)+1), ...
tt(miss(k)+2:end)];
end
xx = interp1(t, x, tt, 'spline'); % Using original x, not xx!
dt = dt / 10; % Decrease time interval for next iteration
end
end
figure;
axes;
plot(t, x, 'ro');
hold('on');
plot(tt, xx, 'b.');
7 个评论
Jan
2021-5-28
interp1 is slow. A griddedInterpolant will be faster.
If the input is large, the iterative growing of tt is a bad idea.
Maybe this solution is a bad strategy. So please explain, which problem you want to solve actually. If all want want to achive is a list of numbers with gaps < 25, there are better methods.
更多回答(2 个)
J. Alex Lee
2021-5-28
Here's [another approximate] way to do it that will only call spline once (could as well do it with gridded interpolant)
The method I suggested above won't work with spline because the interval between t = 0.5 and t = 0.75 is not monotonic after the global spline fit.
So this method is still only approximate to satisfy dx_min.
x = [555 554 100 10 36 20 17 5 51 70 101 40 13];
L = numel(x);
fs = 4;
t = 0:1/fs:(L-1)/fs;
% do the spline fit to the whole set of points once
pp = spline(t,x)
% define the minimum gap in x you want
dxmin = 25
x_agaps = abs(diff(x))
t_agaps = abs(diff(t))
dx_mult = 1.2; % extra refinement tweak
% find the intervals where your gap is violated
intvls = find(x_agaps > 25);
% for each interval, generate
tc = cell(numel(intvls),1);
xc = cell(numel(intvls),1);
for i = 1:numel(intvls)
% for i = 2
idx = intvls(i);
% split the interval into n points such that
% ROUGHLY minimum gap is satisfied (assuming linear)
n = ceil(x_agaps(idx)/dxmin * dx_mult);
tt = linspace(t(idx),t(idx+1),2+n);
xx = ppval(pp,tt);
tc{i} = tt(2:end-1);
xc{i} = xx(2:end-1);
end
tI = horzcat(t,tc{:});
xI = horzcat(x,xc{:});
[tI,srtIdx] = sort(tI);
xI = xI(srtIdx);
% analyze violations there are...
abs(diff(xI))
idxViol = find(abs(diff(xI))>dxmin)
figure(1); cla; hold on;
plot(t,x,'.','MarkerSize',12)
plot(tI,xI,'o')
fplot(@(t)(ppval(pp,t)),t([1,end]),'-')
plot(tI(idxViol),xI(idxViol),'x','MarkerSize',9,'LineWidth',2)
1 个评论
Jan
2021-5-28
Of course, this is an efficient idea: My code computes the spline interpolation for the same intervals repeatedly, but computing te spline onces and insert only additional interpolation steps is leaner and faster.
J. Alex Lee
2021-5-28
If you just want the points to be "appear" roughly evenly distributed, you could consider spacing in the arc length (although you'd have to re-scale one of the dimensions so that it looks "even" in the plot)
x = [555 554 100 10 36 20 17 5 51 70 101 40 13];
L = numel(x);
fs = 4;
t=0:1/fs:(L-1)/fs;
% interpolate more than you ultimately need
tI = linspace(t(1),t(end),2000)';
xI = interp1(t,x,tI,'spline');
% scale by
% scl = 200;
scl = max(xI)/max(tI)
% parameterize the ultra-refined curve w.r.t. its own arclength s
sI = [0;cumsum(sqrt(scl^2*diff(tI).^2+diff(xI).^2))];
% then interpolate both x and t w.r.t. s
% in the steepest part of the curve, dx ~ 25 corresponds to
se = linspace(sI(1),sI(end),50)';
te = interp1(sI,tI,se);
xe = interp1(sI,xI,se);
figure(1); cla; hold on;
plot(t,x,'x')
plot(te,xe,'o')
plot(tI,xI,'-')
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!