Step response invariant discretization of fractional order integrators/differe​ntiators

版本 1.0.0.0 (1.9 KB) 作者: YangQuan Chen
Compute a discrete-time finite dimensional (z) transfer function to approximate s^r, r = real number
2.6K 次下载
更新时间 2008/9/8

无许可证

% Step response invariant discretization of fractional order integrators
%
% srid_fod function is prepared to compute a discrete-time finite dimensional
% (z) transfer function to approximate a continuous-time fractional order
% integrator/differentiator function s^r, where "s" is the Laplace transform variable, and "r" is a
% real number in the range of (-1,1). s^r is called a fractional order
% differentiator if 0 < r < 1 and a fractional order integrator if -1 < r < 0.
%
% The proposed approximation keeps the step response "invariant"
%
% IN:
% r: the fractional order
% Ts: the sampling period
% norder: the finite order of the approximate z-transfer function
% (the orders of denominator and numerator z-polynomial are the same)
% OUT:
% sr: returns the LTI object that approximates the s^r in the sense
% of step response.
% TEST CODE
% dfod=srid_fod(-.5,.01,5);figure;pzmap(dfod)
%
% Reference: YangQuan Chen. "Impulse-invariant and step-invariant
% discretization of fractional order integrators and differentiators".
% August 2008. CSOIS AFC (Applied Fractional Calculus) Seminar.
% http://fractionalcalculus.googlepages.com/

引用格式

YangQuan Chen (2024). Step response invariant discretization of fractional order integrators/differentiators (https://www.mathworks.com/matlabcentral/fileexchange/21363-step-response-invariant-discretization-of-fractional-order-integrators-differentiators), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2007a
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Dynamic System Models 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0