Data Preprocessing for Deep Learning
From the series: Perception
In this video, Neha Goel and Connell D’Souza will go over the different steps required to prepare a dataset to be used in designing object detection deep learning models.
First, Neha demonstrates how to resize and randomly sample images to create three datasets for training, validation, and testing and discusses the importance of this step.
Next, the Ground truth Labeler app is discussed for data labeling. You can use the ground truth labeler app or Video Labeler app to automate data labeling using either built-in automation algorithms or custom automation algorithms. Once the ground truth has been generated, preparing this data for training neural network is also discussed.
Resources:
Published: 3 Jan 2020
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)