Deep Learning with MATLAB, NVIDIA Jetson, and ROS
From the series: Implementation
Jon Zeosky and Sebastian Castro discuss how algorithms designed in MATLAB® can be deployed as standalone CUDA® code to target NVIDIA® GPUs, and how this standalone code can be used in a development process involving Robot Operating System (ROS).
In the software demonstration, Jon and Sebastian first use a pretrained neural network in MATLAB to create a deep learning classification algorithm. Then, they use GPU Coder™ to generate a standalone library from this algorithm and deploy it to an NVIDIA Jetson™ platform. Finally, they integrate the generated library into a ROS node developed in C++ to connect with other software nodes running on the network.
Download the example files used in this video from MATLAB Central File Exchange.
Learn more with the following resources:
Published: 12 Nov 2018
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)