Training and Validating Object Detectors
From the series: Perception
After generating ground truth data in part 1, Sebastian Castro and Connell D’Souza of MathWorks go over the workflow for using this labeled data to train and evaluate an aggregate channel features object detector. This is done using built-in MATLAB® training functions.
Sebastian and Connell show you how to use built-in functions to create training and evaluation datasets from labeled ground truth data. Once created, the training dataset is used to train an object detector using a single line function.
The trained detector is then used on an independent video stream to identify the objects of interest. The results are compared against the ground truth for this independent video stream to evaluate the trained detector. Sebastian and Connell also discuss metrics for object detector evaluation. Download all the files used in this video from MATLAB Central's File Exchange
Additional Resources:
Published: 18 Oct 2018
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)