图像识别概述
不可不知的三大要点
不可不知的三大要点
图像识别是识别图像或视频中的目标或特征的过程。这项技术已应用于多个领域,如缺陷检测、医学成像和安全监控。
图像识别是支持这些应用的核心技术。它可以识别图像中的目标或场景,然后利用这些信息做出决策。而它做出的决策将作为更大的系统的一部分。图像识别将会帮助这些系统增强感知能力,其本质是通过为系统提供洞察力来支持其做出更好的决策。
图像识别和目标检测这两项技术十分相似,经常会一起使用。图像识别用于识别图像中的目标或场景,而目标检测用于查找图像中这些目标的实例和位置。
常见的目标检测技术有 Faster R-CNN 和 YOLOv3。
图像识别(左)和目标检测(右)。
图像识别使用了很多方法,包括机器学习和深度学习方法。使用哪种方法取决于具体应用,但一般来说,问题越复杂,需要探索深度学习方法的可能性就越高。
准备训练数据:从一组图像入手,将其汇集为不同的关联类别。这其中可能还包括预处理步骤。其目的是让图像更加一致,从而得到更准确的模型。
创建深度学习模型:虽然您可以从头构建深度学习模型,但最好的方法可能是从预训练模型入手,并将其用作应用的起点。(进一步了解预训练模型。)
训练模型:模型训练就是将测试数据呈现给模型。之后,模型会多次遍历数据,并自动学习与图像相关的最重要特征。随着训练的继续,模型将学习更复杂的特征,直到能够准确地辨别训练集中的图像类。
测试数据:测试模型前所未见的新数据,了解模型对图像的识别情况。如果结果未能达到预期,请重复执行以上四个步骤,直到准确度令人满意。
深度学习方法可能听起来很复杂,但是,通过一些简单的例子开始使用并详细了解该技术不失为一种好方法。
提示:深度学习方法常用于图像识别,因为这些方法可以提供高度准确且可靠的结果。深度学习往往适用于处理大量训练数据,而迁移学习等方法可以简化图像识别工作流。Deep Learning Toolbox™ 提供了一个框架,用于通过算法、预训练模型和 App 设计和实现深度神经网络。
图像识别的机器学习方法就是从图像中识别并提取关键特征,然后将其用作机器学习模型的输入。
您可以使用各种机器学习算法和特征提取方法。这些算法和方法可有多种组合以供创建准确的目标识别模型。
提示:使用机器学习进行目标识别可以灵活地选择最佳的特征和分类器组合以用于学习。这样,便可以最少的数据获得准确的结果。Statistics and Machine Learning Toolbox™ 提供了一系列函数和 App,可用于数据
描述、分析和建模。
图像识别:深度学习与机器学习
如何知道何时使用深度学习,何时使用机器学习来进行图像识别?从较高层面讲,二者区别在于机器学习需要手动选择特征,而深度学习可以自动学习特征。
除了深度学习和机器学习之外,很多经典的图像处理方法在处理某些应用的图像识别方面卓有成效。图像处理方法往往非常适用于“基于像素”的识别应用,如:
MATLAB® 简化了图像识别中较为困难的任务。
经过清理和预处理的数据可确保图像识别有更大的成功机会。使用图像标注器,可以自动执行图像裁剪和标注过程。
一开始时,您可能并不清楚到底是使用深度学习还是机器学习方法。MATLAB 让您可以尝试各种方法组合。探索深度学习预训练模型或机器学习分类算法。
您可以使用 ONNX™(开放式神经网络交换)的导入和导出功能通过 TensorFlow™、Keras、PyTorch 和 Caffe2 等框架与网络和网络架构进行互操作。
最终,您的算法可能需要在桌面环境之外应用。MATLAB 提供了代码生成工具,可用于在任何位置部署图像识别算法:Web、嵌入式硬件或产品级服务器。
创建算法之后,可以使用自动化工作流,通过 GPU Coder™ 生成 TensorRT 或 CUDA® 代码,以用于硬件在环测试。生成的代码可与现有工程集成,并可用于在桌面 GPU 或嵌入式 GPU(如 NVIDIA® Jetson 或 NVIDIA Drive 平台)上验证目标检测算法。
通过文档、示例、视频等拓展您的知识。
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
欧洲