Main Content

initialize

Initialize learnable and state parameters of a dlnetwork

Since R2021a

    Description

    Tip

    Most dlnetwork objects are initialized by default. You only need to manually initialize a dlnetwork if it is uninitialized. You can check if a network is initialized using the Initialized property of the dlnetwork object.

    netUpdated = initialize(net) initializes any unset learnable parameters and state values of net based on the input sizes defined by the network input layers. Any learnable or state parameters that already contain values remain unchanged.

    A network with unset, empty values for learnable and state parameters is uninitialized. You must initialize an uninitialized dlnetwork before you can use it. By default, dlnetwork objects are constructed with initial parameters and do not need initializing.

    example

    netUpdated = initialize(net,X1,...,XN) initializes any unset learnable parameters and state values of net based on the example network inputs or network data layout objects X1,...,XN. Use this syntax when the network has inputs that are not connected to an input layer.

    example

    Examples

    collapse all

    Define a simple image classification network as a layer array.

    layers = [
        imageInputLayer([28 28 1],Normalization="none")
        convolution2dLayer(5,20)
        batchNormalizationLayer
        reluLayer
        fullyConnectedLayer(10)
        softmaxLayer];

    Convert the layer graph to a dlnetwork object. Create an uninitialized dlnetwork object by setting the Initialize option to false.

    net = dlnetwork(layers,Initialize=false);

    View the learnable parameters of the network. Because the network is not initialized, the values are empty.

    net.Learnables
    ans=6×3 table
           Layer       Parameter       Value    
        ___________    _________    ____________
    
        "conv"         "Weights"    {0x0 double}
        "conv"         "Bias"       {0x0 double}
        "batchnorm"    "Offset"     {0x0 double}
        "batchnorm"    "Scale"      {0x0 double}
        "fc"           "Weights"    {0x0 double}
        "fc"           "Bias"       {0x0 double}
    
    

    Initialize the learnable parameters of the network using the initialize function.

    net = initialize(net);

    View the learnable parameters of the network. Because the network is now initialized, the values are nonempty with sizes inferred using the size of the input layer.

    net.Learnables
    ans=6×3 table
           Layer       Parameter           Value       
        ___________    _________    ___________________
    
        "conv"         "Weights"    { 5x5x1x20 dlarray}
        "conv"         "Bias"       { 1x1x20   dlarray}
        "batchnorm"    "Offset"     { 1x1x20   dlarray}
        "batchnorm"    "Scale"      { 1x1x20   dlarray}
        "fc"           "Weights"    {10x11520  dlarray}
        "fc"           "Bias"       {10x1      dlarray}
    
    

    Define a multi-input image classification network.

    numFilters = 24;
    
    net = dlnetwork;
    
    layersBranch1 = [
        convolution2dLayer(3,6*numFilters,Padding="same",Stride=2)
        groupNormalizationLayer("all-channels")
        reluLayer
        convolution2dLayer(3,numFilters,Padding="same")
        groupNormalizationLayer("channel-wise")
        additionLayer(2,Name="add")
        reluLayer
        fullyConnectedLayer(10)
        softmaxLayer];
    
    layersBranch2 = [
        convolution2dLayer(1,numFilters,Name="conv_branch")
        groupNormalizationLayer("all-channels",Name="groupnorm_branch")];
    
    net = addLayers(net, layersBranch1);
    net = addLayers(net,layersBranch2);
    net = connectLayers(net,"groupnorm_branch","add/in2"); 

    Visualize the layers in a plot.

    figure
    plot(net)

    Figure contains an axes object. The axes object contains an object of type graphplot.

    View the learnable parameters of the network. Because the network is not initialized, the values are empty.

    net.Learnables
    ans=14×3 table
              Layer           Parameter       Value    
        __________________    _________    ____________
    
        "conv_1"              "Weights"    {0x0 double}
        "conv_1"              "Bias"       {0x0 double}
        "groupnorm_1"         "Offset"     {0x0 double}
        "groupnorm_1"         "Scale"      {0x0 double}
        "conv_2"              "Weights"    {0x0 double}
        "conv_2"              "Bias"       {0x0 double}
        "groupnorm_2"         "Offset"     {0x0 double}
        "groupnorm_2"         "Scale"      {0x0 double}
        "fc"                  "Weights"    {0x0 double}
        "fc"                  "Bias"       {0x0 double}
        "conv_branch"         "Weights"    {0x0 double}
        "conv_branch"         "Bias"       {0x0 double}
        "groupnorm_branch"    "Offset"     {0x0 double}
        "groupnorm_branch"    "Scale"      {0x0 double}
    
    

    View the names of the network inputs.

    net.InputNames
    ans = 1x2 cell
        {'conv_1'}    {'conv_branch'}
    
    

    Create random dlarray objects representing inputs to the network. Use an example input of size 64-by-64 with 3 channels for the main branch of the network. Use an input of size 64-by-64 with 18 channels for the second branch.

    inputSize = [64 64 3];
    inputSizeBranch = [32 32 18];
    
    X1 = dlarray(rand(inputSize),"SSCB");
    X2 = dlarray(rand(inputSizeBranch),"SSCB");

    Initialize the learnable parameters of the network using the initialize function and specify the example inputs. Specify the inputs with order corresponding to the InputNames property of the network.

    net = initialize(net,X1,X2);

    View the learnable parameters of the network. Because the network is now initialized, the values are nonempty with sizes inferred using the size of the input data.

    net.Learnables
    ans=14×3 table
              Layer           Parameter            Value        
        __________________    _________    _____________________
    
        "conv_1"              "Weights"    { 3x3x3x144  dlarray}
        "conv_1"              "Bias"       { 1x1x144    dlarray}
        "groupnorm_1"         "Offset"     { 1x1x144    dlarray}
        "groupnorm_1"         "Scale"      { 1x1x144    dlarray}
        "conv_2"              "Weights"    { 3x3x144x24 dlarray}
        "conv_2"              "Bias"       { 1x1x24     dlarray}
        "groupnorm_2"         "Offset"     { 1x1x24     dlarray}
        "groupnorm_2"         "Scale"      { 1x1x24     dlarray}
        "conv_branch"         "Weights"    { 1x1x18x24  dlarray}
        "conv_branch"         "Bias"       { 1x1x24     dlarray}
        "groupnorm_branch"    "Offset"     { 1x1x24     dlarray}
        "groupnorm_branch"    "Scale"      { 1x1x24     dlarray}
        "fc"                  "Weights"    {10x24576    dlarray}
        "fc"                  "Bias"       {10x1        dlarray}
    
    

    Create an uninitialized dlnetwork object that has two unconnected inputs.

    layers = [
        convolution2dLayer(5,16,Name="conv")
        batchNormalizationLayer
        reluLayer
        fullyConnectedLayer(50)
        flattenLayer
        concatenationLayer(1,2,Name="cat")
        fullyConnectedLayer(10)
        softmaxLayer];
    
    net = dlnetwork(layers,Initialize=false);

    View the input names of the network.

    net.InputNames
    ans = 1x2 cell
        {'conv'}    {'cat/in2'}
    
    

    Create network data layout objects that represent input data for the inputs. For the first input, specify a batch of 28-by-28 grayscale images. For the second input specify a batch of single-channel feature data.

    layout1 = networkDataLayout([28 28 1 NaN],"SSCB");
    layout2 = networkDataLayout([1 NaN],"CB");

    Initialize the network using the network data layout objects.

    net = initialize(net,layout1,layout2)
    net = 
      dlnetwork with properties:
    
             Layers: [8x1 nnet.cnn.layer.Layer]
        Connections: [7x2 table]
         Learnables: [8x3 table]
              State: [2x3 table]
         InputNames: {'conv'  'cat/in2'}
        OutputNames: {'softmax'}
        Initialized: 1
    
      View summary with summary.
    
    

    Input Arguments

    collapse all

    Uninitialized network, specified as a dlnetwork object.

    Example data or data layouts to use to determine the size and formats of learnable and state parameters, specified as formatted dlarray objects or formatted networkDataLayout objects. The software propagates X1,...XN through the network to determine the appropriate sizes and formats of the learnable and state parameters of the dlnetwork object and initializes any unset learnable or state parameters.

    Provide example inputs in the same order as the order specified by the InputNames property of the input network.

    Note

    Automatic initialization uses only the size and format information of the input data. For initialization that depends on the values on the input data, you must initialize the learnable parameters manually.

    Output Arguments

    collapse all

    Initialized network, returned as an initialized dlnetwork object.

    The initialize function does not preserve quantization information. If the input network is a quantized network, then the output network does not contain quantization information.

    Version History

    Introduced in R2021a

    expand all