可视化和验证深度神经网络
在训练期间和训练后,可视化深度网络。使用内置的网络准确度和损失图或通过指定自定义度量监控训练进度。使用可视化和可解释性方法,如 Grad-CAM、遮挡敏感度、LIME、Deep Dream 和 D-RISE 研究经过训练的网络。
使用深度学习验证方法来评估深度神经网络的属性。例如,您可以验证网络的稳健性属性、计算网络输出边界、查找对抗样本以及检测分布外数据。
精选示例
Explore Network Predictions Using Deep Learning Visualization Techniques
Investigate network predictions using deep learning visualization techniques.
Grad-CAM Reveals the Why Behind Deep Learning Decisions
Use the gradient-weighted class activation mapping (Grad-CAM) technique to understand why a deep learning network makes its classification decisions. Grad-CAM, invented by Selvaraju and coauthors [1], uses the gradient of the classification score with respect to the convolutional features determined by the network in order to understand which parts of the image are most important for classification. This example uses the GoogLeNet pretrained network for images.
Interpret Deep Learning Time-Series Classifications Using Grad-CAM
Use the gradient-weighted class activation mapping (Grad-CAM) technique to understand the classification decisions of a 1-D convolutional neural network trained on time-series data.
Understand Network Predictions Using LIME
Use locally interpretable model-agnostic explanations (LIME) to understand why a deep neural network makes a classification decision.
Build Simple App for Deep Learning Inference Using App Designer
Use App Designer to create an app that can classify images using a deep neural network. You can modify the app for other types of deep learning inference, for example, sequence classification or image regression.
- 自 R2024b 起
- 打开实时脚本
Generate Untargeted and Targeted Adversarial Examples for Image Classification
Use the fast gradient sign method (FGSM) and the basic iterative method (BIM) to generate adversarial examples for a pretrained neural network.
Verify Robustness of Deep Learning Neural Network
Verify the adversarial robustness of a deep learning neural network.
Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions
Monitor vanishing gradients while training a deep neural network.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)







