recreg
Recursive linear regression
Syntax
Description
recreg
recursively estimates coefficients
(β) and their standard errors in a multiple linear regression
model of the form y = Xβ + ε by
performing successive regressions using nested or rolling windows.
recreg
has options for OLS, HAC, and FGLS estimates, and
for iterative plots of the estimates.
[
returns a table of regression coefficients estimates and a table of standard
error estimates from a recursive regression on the linear model of the
variables in the input table or timetable.CoeffTbl
,SETbl
] = recreg(Tbl
)
The response variable in the regression is the last table variable, and all
other variables are the predictor variables. To select a different response
variable for the regression, use the ResponseVariable
name-value argument. To select different predictor variables, use the
PredictorNames
name-value argument.
___ = recreg(___,
specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes.
Name=Value
)recreg
returns the output argument combination for the
corresponding input arguments. For example,
recreg(Tbl,ResponseVariable="GDP",Intercept=false,Estimator="fgls")
excludes an intercept term from the regression model, in which the response
variable is the variable GDP
in the input table, and uses
FGLS to estimate coefficients and standard errors.
recreg(___)
plots iterative coefficient
estimates with ±2 standard error bands for each coefficient in the multiple
linear regression model.
___ = recreg(
plots on the axes specified in ax
,___)ax
instead of the axes of new
figures. The option ax
can precede any of the input argument
combinations in the previous syntaxes.
[___,
additionally returns handles to plotted graphics objects. Use elements of
coeffPlots
] = recreg(___)coeffPlots
to modify properties of the plots after you
create it.
Examples
Inspect Consumption Model Coefficients for Structural Change
Check coefficient estimates for instability in a model of food demand around World War II. Implement forward and backward recursive regressions in a rolling window.
Load the US food consumption data set, which contains annual measurements from 1927 through 1962 with missing data due to WWII.
load Data_Consumption
For more details on the data, enter Description
at the command prompt.
Plot the series.
P = Data(:,1); % Food price index I = Data(:,2); % Disposable income index Q = Data(:,3); % Food consumption index figure plot(dates,[P I Q]) axis tight grid on xlabel("Year") ylabel("Index") title("\bf Time Series Plot of All Series") legend("Price","Income","Consumption",Location="southeast")
Measurements are missing from 1942 through 1947, which correspond to WWII.
To examine elasticities, apply the log transformation to each series.
LP = log(P); LI = log(I); LQ = log(Q);
Consider a model in which log consumption is a linear function of the logs of food price and income. In other words,
is a Gaussian random variable with mean 0 and standard deviation .
Identify the breakpoint index at the end of WWII, 1945. Ignore missing years with missing data.
numCoeff = 4; % Three predictors and an intercept T = numel(dates(~isnan(P))); % Sample size bpIdx = find(dates(~isnan(P)) >= 1945,1) - numCoeff
bpIdx = 12
The 12th iteration corresponds to the end of the war.
Plot forward recursive-regression coefficient estimates using a rolling window 1/4 of the sample size. Indicate to plot the coefficients of LP
and LI
only in the same figure.
X = [LP LI]; y = LQ; varnames = ["Log-price" "Log-income"]; plotvars = [false true true]; window = ceil(T*1/4); recreg(X,y,Window=window,Plot="combined",PlotVars=plotvars, ... VarNames=varnames);
Plot forward recursive-regression coefficient estimates using a rolling window 1/3 of the sample size.
window = ceil(T*1/3); recreg(X,y,Window=window,Plot="combined",PlotVars=plotvars, ... VarNames=varnames);
Plot forward recursive-regression coefficient estimates using a rolling window of size 1/2 of the sample size.
window = ceil(T*1/2); recreg(X,y,Window=window,Plot="combined",PlotVars=plotvars, ... VarNames=varnames);
As the window size increases, the lines show less volatility, but the coefficients do exhibit instability.
Inspect Real US GNP Model for Instability
Apply recursive regressions using nested windows to look for instability in an explanatory model of real GNP for a period spanning World War II.
Load the Nelson-Plosser data set.
load Data_NelsonPlosser
The time series in the data set contain annual, macroeconomic measurements from 1860 to 1970. For more details, a list of variables, and descriptions, enter Description
in the command line.
Several series have missing data. Focus the sample to measurements from 1915 to 1970. Identify the index corresponding to 1945, the end of WWII, to use as a breakpoint for the test.
span = (1915 <= dates) & (dates <= 1970); bp = find(dates(span) == 1945);
Consider the multiple linear regression model
Collect the model variables into a tabular array. Position the predictors in the first three columns and the response in the last column. Compute the number of coefficients in the model.
Tbl = DataTable(span,[4,5,10,1]); numCoeff = height(Tbl);
Estimate the coefficients using recursive regressions, and return separate plots for the iterative estimates. Identify the iteration corresponding to the end of the war.
recreg(Tbl);
bpIter = bp - numCoeff
bpIter = -25
By default, recreg
forms the subsamples using nested windows. The end of the war (1945) occurs at the 27th iteration.
All coefficients show some initial, transient instability during the "burn-in" period (see Tip). The plot of WR
seems stable since the line is relatively flat. However, the plots of E
, IPI
, and the intercept (Const
) show instability, particularly just after iteration 27.
Return tables of iterative coefficient estimates and a table of standard errors.
[CoeffTbl,SeTbl] = recreg(Tbl)
CoeffTbl=4×52 table
Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 Iter7 Iter8 Iter9 Iter10 Iter11 Iter12 Iter13 Iter14 Iter15 Iter16 Iter17 Iter18 Iter19 Iter20 Iter21 Iter22 Iter23 Iter24 Iter25 Iter26 Iter27 Iter28 Iter29 Iter30 Iter31 Iter32 Iter33 Iter34 Iter35 Iter36 Iter37 Iter38 Iter39 Iter40 Iter41 Iter42 Iter43 Iter44 Iter45 Iter46 Iter47 Iter48 Iter49 Iter50 Iter51 Iter52
_________ _________ _________ _________ _________ _________ _________ _________ ________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ ________ _________ _________ _________ _________ _________ _________ _________ ________ _________ _________ _________ _________
Const -68.313 -68.159 -69.09 -82.751 -103.08 -110.89 -128.78 -143.35 -145.34 -145.7 -144.99 -144.89 -138.22 -132.97 -136.44 -138.5 -137.67 -133.23 -134.23 -138.4 -136.51 -135.89 -137.4 -129.78 -123.62 -123.76 -133.27 -137.67 -136.66 -133.9 -134.03 -118.43 -100.44 -88.055 -79.962 -74.23 -71.441 -76.452 -78.424 -77.625 -78.071 -77.155 -75.387 -69.307 -63.127 -56.891 -48.067 -41.498 -37.059 -34.289 -34.159 -33.111
IPI -0.19396 -0.26934 -0.23743 0.1147 1.1563 1.4004 1.7091 1.8108 1.9295 1.6962 1.8353 1.8286 1.9712 1.9167 1.7732 1.6692 1.7286 2.1302 1.995 1.9489 2.1656 2.2272 2.0554 1.8136 1.4672 1.3415 1.1593 1.0618 1.1066 1.2453 1.2701 1.7212 2.3317 2.7073 2.9193 3.0347 3.0946 2.9913 2.9503 2.9431 2.9357 2.9536 2.9781 3.1112 3.2635 3.4263 3.6943 3.9185 4.0934 4.2018 4.208 4.3063
E 0.0052645 0.0055309 0.0055981 0.0053891 0.0048281 0.0046665 0.0049113 0.0053202 0.005254 0.0054972 0.0053744 0.0053981 0.0046767 0.0043011 0.0045254 0.0046878 0.0046215 0.0042438 0.0043549 0.0043299 0.0041189 0.0040688 0.0041893 0.0041366 0.0040636 0.0041145 0.0043661 0.0044527 0.0044182 0.0043419 0.0042948 0.0036566 0.0030707 0.0026066 0.0022932 0.0019903 0.0018696 0.0020991 0.0021872 0.002095 0.0021159 0.0020759 0.0019813 0.0017761 0.0016083 0.0014596 0.0013216 0.001264 0.0012525 0.0012474 0.0012488 0.0013136
WR -0.1097 -0.52635 -0.62228 0.10675 1.2592 1.7072 1.8568 1.7174 1.8357 1.591 1.6799 1.6407 2.4802 2.9305 2.7864 2.664 2.7035 2.8985 2.8403 3.0737 3.208 3.2268 3.1978 3.1503 3.2559 3.2607 3.3254 3.4107 3.4009 3.3355 3.3988 3.5459 3.427 3.4651 3.5263 3.7157 3.7646 3.6554 3.616 3.7333 3.7218 3.7393 3.8059 3.8214 3.7642 3.6691 3.4004 3.1159 2.866 2.7074 2.6967 2.4962
SeTbl=4×52 table
Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 Iter7 Iter8 Iter9 Iter10 Iter11 Iter12 Iter13 Iter14 Iter15 Iter16 Iter17 Iter18 Iter19 Iter20 Iter21 Iter22 Iter23 Iter24 Iter25 Iter26 Iter27 Iter28 Iter29 Iter30 Iter31 Iter32 Iter33 Iter34 Iter35 Iter36 Iter37 Iter38 Iter39 Iter40 Iter41 Iter42 Iter43 Iter44 Iter45 Iter46 Iter47 Iter48 Iter49 Iter50 Iter51 Iter52
_________ __________ __________ ________ _________ _________ _________ _______ _________ _________ _________ _________ ________ _________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ _________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ _________ __________ __________ ________ __________ ________ ________ __________ __________ __________ __________ __________ __________ __________
Const 25.046 17.761 13.542 26.937 23.487 22.49 24.476 23.21 21.624 20.733 19.635 18.804 19.415 19.645 16.837 16.147 15.053 14.482 14.056 16.46 16.437 15.861 15.51 17.403 20.502 20.579 18.795 18.287 17.856 17.98 18.278 19.066 21.269 21.564 20.02 19.564 18.059 17.337 16.675 16.51 15.886 15.449 15.237 15.021 14.431 13.733 12.725 11.6 11.285 10.99 10.724 10.927
IPI 1.372 0.8095 0.63806 1.3034 1.1015 1.0866 1.2787 1.3444 1.2505 1.0933 0.89532 0.85677 0.9022 0.93004 0.82359 0.78861 0.69814 0.5849 0.50843 0.59812 0.56616 0.48889 0.41153 0.45871 0.52933 0.51865 0.49419 0.48475 0.46515 0.45985 0.46714 0.47995 0.51801 0.5138 0.46896 0.46184 0.4317 0.41892 0.40603 0.40296 0.39324 0.38492 0.38225 0.3798 0.36581 0.34681 0.30661 0.24728 0.21661 0.19106 0.16727 0.16107
E 0.0029773 0.00088806 0.00061649 0.001268 0.0012745 0.0012768 0.0015111 0.00156 0.0014781 0.0013213 0.0011703 0.0011097 0.001074 0.0010721 0.00086491 0.00080439 0.00069756 0.00059868 0.00054492 0.00064127 0.00061363 0.00056167 0.00052574 0.00059848 0.0007086 0.00070974 0.00067556 0.00067026 0.00065521 0.00066166 0.00067179 0.00069178 0.00077754 0.00078678 0.00072299 0.00068182 0.00060376 0.00055766 0.0005213 0.00049814 0.00046066 0.000438 0.00042075 0.000408 0.000392 0.00037819 0.00037353 0.00037249 0.00037624 0.00037665 0.00037242 0.00037821
WR 4.4923 1.0841 0.69505 1.3781 1.1311 1.0576 1.2544 1.3167 1.2237 1.0535 0.94646 0.86648 0.73106 0.67509 0.53986 0.48929 0.42646 0.38471 0.35942 0.41265 0.39531 0.3785 0.37151 0.42274 0.49945 0.50132 0.50008 0.49299 0.48526 0.4894 0.49548 0.54059 0.62494 0.65764 0.65499 0.63966 0.62063 0.61069 0.59915 0.56739 0.55232 0.54357 0.53533 0.54476 0.54798 0.54741 0.52804 0.47669 0.44754 0.4222 0.38934 0.38022
Robust Recursive Regression Standard Errors
If a linear regression model violates classical linear model assumptions, then OLS coefficient standard errors are incorrect. However, recreg
has options to estimate coefficients and standard errors that are robust to heteroscedastic or autocorrelated innovations.
Simulate a series from this piecewise regression model with AR(1) errors whose regression coefficient changes at time 51.
is a series of Gaussian innovations with mean 0 and standard deviation 0.5. is Gaussian with mean 1 and standard deviation 0.25.
rng(1); % For reproducibility
T = 100;
muX = 1;
sigmaX = 0.25;
x = sigmaX*randn(T,1) + muX;
ar = 0.6;
sigma = 0.5;
c = 5;
b = [3 -1];
y = zeros(T,1);
Mdl1 = regARIMA(AR=ar,Variance=sigma,Intercept=c,Beta=b(1));
y(1:T/2) = simulate(Mdl1,T/2,X=x(1:T/2));
Mdl2 = regARIMA(AR=ar,Variance=sigma,Intercept=c,Beta=b(2));
y((T/2 + 1):T) = simulate(Mdl2,T/2,X=x((T/2 + 1):T));
Estimate recursive regression coefficients using OLS.
[CoeffOLS,SEOLS] = recreg(x,y,Plot="separate");
After transient effects, 5
is within the confidence bounds of the intercept estimates. There is an insignificant but persistent shock at iteration 50. The coefficient estimates show the structural change after iteration 60.
To account for autocorrelated innovations, estimate recursive regression coefficients using OLS, but with Newey-West robust standard errors. For estimating the HAC standard errors, use the quadratic-spectral weighting scheme.
hacOptions.Weights = "QS"
hacOptions = struct with fields:
Weights: "QS"
[CoeffNW,SENW] = recreg(x,y,Estimator="hac",Options=hacOptions, ... Plot="separate");
The HAC coefficient estimates are the same as the OLS estimates. The confidence bounds are slightly different because the standard error estimators are different.
Input Arguments
X
— Predictor data X
numeric matrix
Predictor data X for the multiple linear regression model,
specified as a numObs
-by-numPreds
numeric
matrix.
Each row represents one of the numObs
observations and each column
represents one of the numPreds
predictor variables.
Data Types: double
y
— Response data y
numeric vector
Response data y for the multiple linear
regression model, specified as a
numObs
-by-1 numeric vector.
Rows of y
and
X
correspond.
Data Types: double
Tbl
— Combined predictor and response data
table | timetable
Combined predictor and response data for the multiple linear regression model,
specified as a table or timetable with numObs
rows. Each row of
Tbl
is an observation.
The test regresses the response variable, which is the last variable in
Tbl
, on the predictor variables, which are all other variables
in Tbl
. To select a different response variable for the regression,
use the ResponseVariable
name-value argument. To select different
predictor variables, use the PredictorNames
name-value argument to
select numPreds
predictors.
Note
NaN
s in X
,
y
, or Tbl
indicate missing values, and
recreg
removes observations containing at least one
NaN
. That is, to remove NaN
s in X
or y
, recreg
merges the variables [X
y]
, and then it uses list-wise deletion to remove any row that contains at least
one NaN
. recreg
also removes any row of
Tbl
containing at least one NaN
. Removing
NaN
s in the data reduces the sample size and can create irregular time
series.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: recreg(Tbl,ResponseVariable="GDP",Intercept=false,Estimator="fgls")
excludes an intercept term from the regression model, in which the response variable
is the variable GDP
in the table Tbl
, and
uses FGLS to estimate coefficients and standard errors.
Intercept
— Flag to include intercept
true
(default) | false
Flag to include a model intercept, specified as a value in this table.
Value | Description |
---|---|
true | recreg includes an intercept term in the regression model. numCoeffs = numPreds + 1. |
false | recreg does not include an intercept when fitting the regression model. numCoeffs = numPreds . |
Example: Intercept=false
Data Types: logical
Window
— Window length
numeric scalar
Window length, specified as a numeric scalar.
To compute estimates using nested windows, do not specify
Window
. In this case,recreg
begins with the firstnumCoeffs
+ 1 observations, and then adds one observation at each iteration. The number of iterations isnumIter
=numObs
–numCoeffs
.To compute estimates using a rolling window, specify a window length. In this case,
recreg
shifts by one observation at each iteration.Window
must be at leastnumCoeffs
+ 1 and at mostnumObs
. The number of iterations isnumIter
=numObs
–Window
+ 1.
Example: Window=10
Data Types: double
Estimator
— Estimation method
"ols"
(default) | "hac"
| "fgls"
| character vector
Estimation method, specified as a value in this table.
Value | Description |
---|---|
"ols" | Ordinary least squares |
"hac" | Heteroscedasticity and autocorrelation consistent (HAC) standard errors |
"fgls" | Feasible generalized least squares coefficients and standard errors |
Values "hac"
and "fgls"
call
hac
and fgls
, respectively, with
optional name-value arguments specified by
Options
.
Example: Estimator="fgls"
Data Types: char
| string
Options
— hac
and fgls
optional name-value argument names and corresponding values
structure scalar
hac
and fgls
optional name-value
argument names and corresponding values, specified as a structure
scalar.
Use Options
to set any name-value argument except
VarNames
, Intercept
,
Display
, Plot
,
ResponseVariable
, and
PredictorVariables
. For these options, see
corresponding recreg
name-value
arguments.
By default, recreg
calls
hac
or fgls
using
defaults. If Estimator="ols"
,
recreg
ignores
Options
.
Example: Options=struct("ARLags",2)
includes two
lags in the AR innovations model for FGLS estimators.
Data Types: struct
Direction
— Iteration direction
"forward"
(default) | "backward"
| character vector
Iteration direction, specified as a value in this table.
Value | Description |
---|---|
"forward" | Forward recursions move the window of observations from the beginning of the data to the end. |
"backward" | Backward recursions first reverse the order of observations, and then implement forward recursions. |
Example: Direction="backward"
Data Types: char
| string
Plot
— Coefficient estimate plot control
"separate"
| "combined"
| "off"
| character vector
Coefficient estimate plot control, specified as a value in this table. Plots show iterative coefficient estimates with ±2 standard error bands.
Value | Description |
---|---|
"separate" | recreg produces
separate figures for each coefficient. |
"combined" | recreg combines all
plots in a single set of axes. |
"off" | recreg turns off all
plotting. |
The defaults are:
"off"
whenrecreg
returns output arguments"separate"
otherwise
Example: Plot=off
Data Types: char
| string
PlotVars
— Flags for which coefficients to plot
logical vector
Flags for which coefficients to plot, specified as a logical vector of
length numCoeffs
. The first element corresponds to
Intercept
, if present, followed by indicators
for each of the numPred
predictors in
X
or Tbl
. The default is
true(numCoeffs,1)
to plot all
coefficients.
Example: PlotVars=[false true true false]
plots the
second and third coefficients of four coefficients.
Data Types: logical
VarNames
— Variable names for plotted coefficients
string vector | character vector | cell vector of strings | cell vector of character vectors
Variable names for plotted coefficients, specified as a string vector
or cell vector of strings of a length numCoeffs
:
If
Intercept=true
,VarNames(1)
is the name of the intercept (for example'Const'
) andVarNames(
specifies the name to use for variablej
+ 1)X(:,
orj
)PredictorVariables(
.j
)If
Intercept=false
,VarNames(
specifies the name to use for variablej
)X(:,
orj
)PredictorVariables(
.j
)
The default is one of the following alternatives prepended by
'Const'
when an intercept is present in the
model:
Example: VarNames=["Const" "AGE"
"BBD"]
Data Types: char
| cell
| string
ResponseVariable
— Variable in Tbl
to use for response
first variable in Tbl
(default) | string vector | cell vector of character vectors | vector of integers | logical vector
Variable in Tbl
to use for response, specified as a string vector or cell vector of character vectors containing variable names in Tbl.Properties.VariableNames
, or an integer or logical vector representing the indices of names. The selected variables must be numeric.
recreg
uses the same specified response variable for all tests.
Example: ResponseVariable="GDP"
Example: ResponseVariable=[true false false false]
or
ResponseVariable=1
selects the first table variable as the
response.
Data Types: double
| logical
| char
| cell
| string
PredictorVariables
— Variables in Tbl
to use for the predictors
string vector | cell vector of character vectors | vector of integers | logical vector
Variables in Tbl
to use for the predictors, specified as a string vector or cell vector of character vectors containing variable names in Tbl.Properties.VariableNames
, or an integer or logical vector representing the indices of names. The selected variables must be numeric.
recreg
uses the same specified predictors for all tests.
By default, recreg
uses all variables in Tbl
that are not specified by the ResponseVariable
name-value
argument.
Example: PredictorVariables=["UN" "CPI"]
Example: PredictorVariables=[false true true false]
or
DataVariables=[2 3]
selects the second and third table
variables.
Data Types: double
| logical
| char
| cell
| string
Output Arguments
Coeff
— Coefficient estimates of each subsample regression
numeric matrix
Coefficient estimates of each subsample regression, returned as a
numCoeffs
-by-numIter
numeric
matrix. recreg
returns Coeff
when you supply the inputs X
and
y
.
The first row contains the intercept, if present, followed by rows for
predictor coefficients in the column order of X
or
Tbl
. Window
determines
numIter
, the number of columns.
CoeffTbl
— Coefficient estimates of each subsample regression
table
Coefficient estimates of each subsample regression returned as a
numCoeffs
-by-numIter
table.
recreg
returns CoeffTbl
when you supply the input Tbl
.
For i
= 1,…,numCoeffs
, row
i
of CoeffTbl
contains
estimates of coefficient i
in the regression
model and it has label
VarNames(
. Variable
i
)j
contains the estimates of iteration
j
and it has label
Iter
.j
SETbl
— Standard error estimates of each subsample regression
table
Standard error estimates of each subsample regression, returned as a
numCoeffs
-by-numCoeffs
table
containing the coefficient covariance matrix estimate
EstCoeffCov
. recreg
returns SETbl
when you supply the input
Tbl
.
For i
= 1,…,numCoeffs
, row
i
of SETbl
contains the
standard error estimates of coefficient i
in the
regression model and it has label
VarNames(
. Variable
i
)j
contains the estimates of iteration
j
and it has label
Iter
.j
coeffPlots
— Handles to plotted graphics objects
vector of graphics objects
Handles to plotted graphics objects, returned as a vector of graphics objects. coeffPlots
contains unique plot identifiers, which you can use to query or modify properties of the plot.
coeffPlots
is not available if the value of the
Plot
name-value argument is
"off"
.
Tips
Plots of nested-window estimates typically show volatility during a “burn-in” period, in which the number of subsample observations is only slightly larger than the number of coefficients in the model. After this period, any further volatility is evidence of coefficient instability. Sudden changes in coefficient values can indicate a structural change, and sustained changes can indicate model misspecification. For structural change tests, see cusumtest
and chowtest
.
References
[1] Enders, Walter. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc., 1995.
[2] Johnston, J. and J. DiNardo. Econometric Methods. New York: McGraw Hill, 1997.
Version History
Introduced in R2016aR2022a: recreg
returns estimates in tables when you supply a table of data
If you supply a table of time series data Tbl
,
recreg
returns the following outputs:
In the first position,
recreg
returns the tableCoeffTbl
containing iterative coefficient estimatesCoeff
. Rows correspond to model coefficients and variables correspond to iterations, labeled asIter
for iterationj
j
.In the second position,
recreg
returns a table containing the estimated, iterative coefficient standard errorsSE
with dimension corresponding to the dimensions ofCoeffTbl
.
Before R2022a, recreg
returned the numeric outputs in
separate positions of the output when you supplied a table of input data.
Starting in R2022a, if you supply a table of input data, update your code to return all outputs in the first through third output positions.
[CoeffTbl,CovTbl,coeffPlots] = recreg(Tbl,Name=Value)
If you request more outputs, recreg
issues an
error.
Also, access results by using table indexing. For more details, see Access Data in Tables.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)