Computing Instrument Sensitivities
Sensitivities can be reported either as dollar price changes or percentage price changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.
The functions hjmsens
and bdtsens
compute the delta, gamma, and vega sensitivities of instruments
using an interest-rate tree. They also optionally return the calculated price for each
instrument. The sensitivity functions require the same two input arguments used by the
pricing functions (HJMTree
and HJMInstSet
for HJM;
BDTTree
and BDTInstSet
for BDT).
Sensitivity functions calculate the dollar value of delta and gamma by shifting the observed forward yield curve by 100 basis points in each direction, and the dollar value of vega by shifting the volatility process by 1%. To obtain the per-dollar value of the sensitivities, divide the dollar sensitivity by the price of the corresponding instrument.
HJM Sensitivities Example
The calling syntax for the function is:
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree,
HJMInstSet)
Use the previous example data to calculate the price and sensitivity values for the cap and floor instruments.
load deriv.mat HJMSubSet = instselect(HJMInstSet,'Type', {'Floor','Cap'}); % Display instrument set instdisp(HJMSubSet)
Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity 1 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30 Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity 2 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40
Compute price and sensitivity values for the cap and floor instruments.
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMSubSet)
Delta = 294.9700 -47.1629 Gamma = 1.0e+03 * 6.8526 8.4600 Vega = 93.6946 93.6946 Price = 6.2831 0.0486
BDT Sensitivities Example
The calling syntax for the function is:
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree,
BDTInstSet);
Arrange the sensitivities and prices into a single matrix.
All = [Delta, Gamma, Vega, Price]
All = -232.67 803.71 -0.00 95.50 -281.05 1181.93 -0.01 93.91 -50.54 246.02 5.31 1.77 -232.67 803.71 0 95.50 0.84 2.45 0 100.49 78.38 748.98 13.54 1.49 -4.36 382.06 2.50 0.02 -253.23 863.81 0 7.42
To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.
All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All = -2.44 8.42 -0.00 95.50 -2.99 12.59 -0.00 93.91 -28.63 139.34 3.01 1.77 -2.44 8.42 0 95.50 0.01 0.02 0 100.49 52.73 503.92 9.11 1.49 -177.89 15577.42 101.87 0.02 -34.12 116.38 0 7.42
See Also
instbond
| instcap
| instcf
| instfixed
| instfloat
| instfloor
| instoptbnd
| instoptembnd
| instoptfloat
| instoptemfloat
| instrangefloat
| instswap
| instswaption
| intenvset
| bondbyzero
| cfbyzero
| fixedbyzero
| floatbyzero
| intenvprice
| intenvsens
| swapbyzero
| floatmargin
| floatdiscmargin
| hjmtimespec
| hjmtree
| hjmvolspec
| bondbyhjm
| capbyhjm
| cfbyhjm
| fixedbyhjm
| floatbyhjm
| floorbyhjm
| hjmprice
| hjmsens
| mmktbyhjm
| oasbyhjm
| optbndbyhjm
| optfloatbyhjm
| optembndbyhjm
| optemfloatbyhjm
| rangefloatbyhjm
| swapbyhjm
| swaptionbyhjm
| bdttimespec
| bdttree
| bdtvolspec
| bdtprice
| bdtsens
| bondbybdt
| capbybdt
| cfbybdt
| fixedbybdt
| floatbybdt
| floorbybdt
| mmktbybdt
| oasbybdt
| optbndbybdt
| optfloatbybdt
| optembndbybdt
| optemfloatbybdt
| rangefloatbybdt
| swapbybdt
| swaptionbybdt
| hwtimespec
| hwtree
| hwvolspec
| bondbyhw
| capbyhw
| cfbyhw
| fixedbyhw
| floatbyhw
| floorbyhw
| hwcalbycap
| hwcalbyfloor
| hwprice
| hwsens
| oasbyhw
| optbndbyhw
| optfloatbyhw
| optembndbyhw
| optemfloatbyhw
| rangefloatbyhw
| swapbyhw
| swaptionbyhw
| bktimespec
| bktree
| bkvolspec
| bkprice
| bksens
| bondbybk
| capbybk
| cfbybk
| fixedbybk
| floatbybk
| floorbybk
| oasbybk
| optbndbybk
| optfloatbybk
| optembndbybk
| optemfloatbybk
| rangefloatbybk
| swapbybk
| swaptionbybk
| capbyblk
| floorbyblk
| swaptionbyblk
Related Examples
- Overview of Interest-Rate Tree Models
- Pricing Using Interest-Rate Tree Models
- Graphical Representation of Trees
- Understanding Interest-Rate Tree Models
- Understanding the Interest-Rate Term Structure
- Pricing Using Interest-Rate Term Structure