squeezesegv2Layers
Create SqueezeSegV2 segmentation network for organized lidar point cloud
Since R2020b
Description
returns a SqueezeSegV2 layer graph lgraph
= squeezesegv2Layers(inputSize
,numClasses
)lgraph
for organized point clouds of
size inputSize
and the number of classes
numClasses
.
SqueezeSegV2 is a convolutional neural network that predicts pointwise labels for an organized lidar point cloud.
Use the squeezesegv2Layers
function to create the network
architecture for SqueezeSegV2. This function requires Deep Learning Toolbox™.
specifies options using one or more name-value pair arguments in addition to the input
arguments in the previous syntax. For example, lgraph
= squeezesegv2Layers(___,Name,Value
)'NumEncoderModules',4
sets
the number of encoders used to create the network to four.
Examples
Input Arguments
Output Arguments
More About
References
[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud.” In 2019 International Conference on Robotics and Automation (ICRA), 4376–82. Montreal, QC, Canada: IEEE, 2019.https://doi.org/10.1109/ICRA.2019.8793495.
Extended Capabilities
Version History
Introduced in R2020b
See Also
Functions
semanticseg
|trainNetwork
(Deep Learning Toolbox) |evaluateSemanticSegmentation
Objects
focalLossLayer
|pixelClassificationLayer
|layerGraph
(Deep Learning Toolbox) |DAGNetwork
(Deep Learning Toolbox)