tune
Syntax
Description
adjusts the properties of the
tunedMeasureNoise
= tune(filter
,measureNoise
,sensorData
,groundTruth
)insfilterNonholonomic
filter object, filter
, and
measurement noises to reduce the root-mean-squared (RMS) state estimation error between the
fused sensor data and the ground truth. The function also returns the tuned measurement
noise, tunedMeasureNoise
. The function uses the property values in the
filter and the measurement noise provided in the measureNoise
structure
as the initial estimate for the optimization algorithm.
specifies the tuning configuration based on a
tunedMeasureNoise
= tune(___,config
)tunerconfig
object,
config
.
Examples
Tune insfilterNonholonomic
to Optimize Pose Estimate
Load the recorded sensor data and ground truth data.
load('insfilterNonholonomicTuneData.mat');
Create tables for the sensor data and the truth data.
sensorData = table(Accelerometer, Gyroscope, ...
GPSPosition, GPSVelocity);
groundTruth = table(Orientation, Position);
Create an insfilterNonholonimic
filter object.
filter = insfilterNonholonomic('State', initialState, ... 'StateCovariance', initialStateCovariance, ... 'DecimationFactor', 1);
Create a tuner configuration object for the filter. Set the maximum number of iterations to 30.
config = tunerconfig('insfilterNonholonomic','MaxIterations',30);
Use the tunernoise
function to obtain a set of initial sensor noises used in the filter.
measNoise = tunernoise('insfilterNonholonomic')
measNoise = struct with fields:
GPSPositionNoise: 1
GPSVelocityNoise: 1
Tune the filter and obtain the tuned measurement noise.
tunedNoise = tune(filter,measNoise,sensorData,groundTruth,config);
Iteration Parameter Metric _________ _________ ______ 1 GyroscopeNoise 3.4877 1 AccelerometerNoise 3.3961 1 GyroscopeBiasNoise 3.3961 1 GyroscopeBiasDecayFactor 3.3961 1 AccelerometerBiasNoise 3.3961 1 AccelerometerBiasDecayFactor 3.3961 1 ZeroVelocityConstraintNoise 3.3935 1 GPSPositionNoise 3.2848 1 GPSVelocityNoise 3.2798 2 GyroscopeNoise 3.2641 2 AccelerometerNoise 3.1715 2 GyroscopeBiasNoise 3.1715 2 GyroscopeBiasDecayFactor 2.9661 2 AccelerometerBiasNoise 2.9661 2 AccelerometerBiasDecayFactor 2.9661 2 ZeroVelocityConstraintNoise 2.9617 2 GPSPositionNoise 2.8438 2 GPSVelocityNoise 2.8384 3 GyroscopeNoise 2.8373 3 AccelerometerNoise 2.7382 3 GyroscopeBiasNoise 2.7382 3 GyroscopeBiasDecayFactor 2.7382 3 AccelerometerBiasNoise 2.7382 3 AccelerometerBiasDecayFactor 2.7382 3 ZeroVelocityConstraintNoise 2.7335 3 GPSPositionNoise 2.6105 3 GPSVelocityNoise 2.6045 4 GyroscopeNoise 2.6023 4 AccelerometerNoise 2.5001 4 GyroscopeBiasNoise 2.5001 4 GyroscopeBiasDecayFactor 2.5001 4 AccelerometerBiasNoise 2.5001 4 AccelerometerBiasDecayFactor 2.5001 4 ZeroVelocityConstraintNoise 2.4953 4 GPSPositionNoise 2.3692 4 GPSVelocityNoise 2.3626 5 GyroscopeNoise 2.3595 5 AccelerometerNoise 2.2561 5 GyroscopeBiasNoise 2.2561 5 GyroscopeBiasDecayFactor 2.2508 5 AccelerometerBiasNoise 2.2508 5 AccelerometerBiasDecayFactor 2.2508 5 ZeroVelocityConstraintNoise 2.2469 5 GPSPositionNoise 2.1265 5 GPSVelocityNoise 2.1191 6 GyroscopeNoise 2.1148 6 AccelerometerNoise 2.0150 6 GyroscopeBiasNoise 2.0150 6 GyroscopeBiasDecayFactor 2.0150 6 AccelerometerBiasNoise 2.0150 6 AccelerometerBiasDecayFactor 2.0150 6 ZeroVelocityConstraintNoise 2.0116 6 GPSPositionNoise 1.8970 6 GPSVelocityNoise 1.8888 7 GyroscopeNoise 1.8847 7 AccelerometerNoise 1.7921 7 GyroscopeBiasNoise 1.7921 7 GyroscopeBiasDecayFactor 1.7845 7 AccelerometerBiasNoise 1.7845 7 AccelerometerBiasDecayFactor 1.7845 7 ZeroVelocityConstraintNoise 1.7815 7 GPSPositionNoise 1.6794 7 GPSVelocityNoise 1.6708 8 GyroscopeNoise 1.6679 8 AccelerometerNoise 1.5886 8 GyroscopeBiasNoise 1.5886 8 GyroscopeBiasDecayFactor 1.5866 8 AccelerometerBiasNoise 1.5866 8 AccelerometerBiasDecayFactor 1.5866 8 ZeroVelocityConstraintNoise 1.5850 8 GPSPositionNoise 1.5057 8 GPSVelocityNoise 1.4965 9 GyroscopeNoise 1.4950 9 AccelerometerNoise 1.4364 9 GyroscopeBiasNoise 1.4364 9 GyroscopeBiasDecayFactor 1.4364 9 AccelerometerBiasNoise 1.4364 9 AccelerometerBiasDecayFactor 1.4364 9 ZeroVelocityConstraintNoise 1.4355 9 GPSPositionNoise 1.3894 9 GPSVelocityNoise 1.3790 10 GyroscopeNoise 1.3773 10 AccelerometerNoise 1.3422 10 GyroscopeBiasNoise 1.3422 10 GyroscopeBiasDecayFactor 1.3421 10 AccelerometerBiasNoise 1.3421 10 AccelerometerBiasDecayFactor 1.3421 10 ZeroVelocityConstraintNoise 1.3399 10 GPSPositionNoise 1.3319 10 GPSVelocityNoise 1.3190 11 GyroscopeNoise 1.3159 11 AccelerometerNoise 1.3102 11 GyroscopeBiasNoise 1.3102 11 GyroscopeBiasDecayFactor 1.3100 11 AccelerometerBiasNoise 1.3100 11 AccelerometerBiasDecayFactor 1.3100 11 ZeroVelocityConstraintNoise 1.3069 11 GPSPositionNoise 1.2964 11 GPSVelocityNoise 1.2762 12 GyroscopeNoise 1.2740 12 AccelerometerNoise 1.2655 12 GyroscopeBiasNoise 1.2655 12 GyroscopeBiasDecayFactor 1.2641 12 AccelerometerBiasNoise 1.2641 12 AccelerometerBiasDecayFactor 1.2641 12 ZeroVelocityConstraintNoise 1.2631 12 GPSPositionNoise 1.2511 12 GPSVelocityNoise 1.2198 13 GyroscopeNoise 1.2184 13 AccelerometerNoise 1.2058 13 GyroscopeBiasNoise 1.2058 13 GyroscopeBiasDecayFactor 1.2029 13 AccelerometerBiasNoise 1.2029 13 AccelerometerBiasDecayFactor 1.2029 13 ZeroVelocityConstraintNoise 1.2029 13 GPSPositionNoise 1.1874 13 GPSVelocityNoise 1.1408 14 GyroscopeNoise 1.1403 14 AccelerometerNoise 1.1236 14 GyroscopeBiasNoise 1.1236 14 GyroscopeBiasDecayFactor 1.1186 14 AccelerometerBiasNoise 1.1186 14 AccelerometerBiasDecayFactor 1.1186 14 ZeroVelocityConstraintNoise 1.1183 14 GPSPositionNoise 1.0975 14 GPSVelocityNoise 1.0348 15 GyroscopeNoise 1.0347 15 AccelerometerNoise 1.0155 15 GyroscopeBiasNoise 1.0155 15 GyroscopeBiasDecayFactor 1.0081 15 AccelerometerBiasNoise 1.0081 15 AccelerometerBiasDecayFactor 1.0081 15 ZeroVelocityConstraintNoise 1.0076 15 GPSPositionNoise 0.9813 15 GPSVelocityNoise 0.9078 16 GyroscopeNoise 0.9074 16 AccelerometerNoise 0.8926 16 GyroscopeBiasNoise 0.8926 16 GyroscopeBiasDecayFactor 0.8823 16 AccelerometerBiasNoise 0.8823 16 AccelerometerBiasDecayFactor 0.8823 16 ZeroVelocityConstraintNoise 0.8815 16 GPSPositionNoise 0.8526 16 GPSVelocityNoise 0.7926 17 GyroscopeNoise 0.7920 17 AccelerometerNoise 0.7870 17 GyroscopeBiasNoise 0.7870 17 GyroscopeBiasDecayFactor 0.7742 17 AccelerometerBiasNoise 0.7742 17 AccelerometerBiasDecayFactor 0.7742 17 ZeroVelocityConstraintNoise 0.7730 17 GPSPositionNoise 0.7665 17 GPSVelocityNoise 0.7665 18 GyroscopeNoise 0.7662 18 AccelerometerNoise 0.7638 18 GyroscopeBiasNoise 0.7638 18 GyroscopeBiasDecayFactor 0.7495 18 AccelerometerBiasNoise 0.7495 18 AccelerometerBiasDecayFactor 0.7495 18 ZeroVelocityConstraintNoise 0.7482 18 GPSPositionNoise 0.7482 18 GPSVelocityNoise 0.7475 19 GyroscopeNoise 0.7474 19 AccelerometerNoise 0.7474 19 GyroscopeBiasNoise 0.7474 19 GyroscopeBiasDecayFactor 0.7474 19 AccelerometerBiasNoise 0.7474 19 AccelerometerBiasDecayFactor 0.7474 19 ZeroVelocityConstraintNoise 0.7453 19 GPSPositionNoise 0.7416 19 GPSVelocityNoise 0.7382 20 GyroscopeNoise 0.7378 20 AccelerometerNoise 0.7370 20 GyroscopeBiasNoise 0.7370 20 GyroscopeBiasDecayFactor 0.7370 20 AccelerometerBiasNoise 0.7370 20 AccelerometerBiasDecayFactor 0.7370 20 ZeroVelocityConstraintNoise 0.7345 20 GPSPositionNoise 0.7345 20 GPSVelocityNoise 0.7345 21 GyroscopeNoise 0.7334 21 AccelerometerNoise 0.7334 21 GyroscopeBiasNoise 0.7334 21 GyroscopeBiasDecayFactor 0.7334 21 AccelerometerBiasNoise 0.7334 21 AccelerometerBiasDecayFactor 0.7334 21 ZeroVelocityConstraintNoise 0.7306 21 GPSPositionNoise 0.7279 21 GPSVelocityNoise 0.7268 22 GyroscopeNoise 0.7248 22 AccelerometerNoise 0.7247 22 GyroscopeBiasNoise 0.7247 22 GyroscopeBiasDecayFactor 0.7234 22 AccelerometerBiasNoise 0.7234 22 AccelerometerBiasDecayFactor 0.7234 22 ZeroVelocityConstraintNoise 0.7207 22 GPSPositionNoise 0.7206 22 GPSVelocityNoise 0.7170 23 GyroscopeNoise 0.7138 23 AccelerometerNoise 0.7134 23 GyroscopeBiasNoise 0.7134 23 GyroscopeBiasDecayFactor 0.7134 23 AccelerometerBiasNoise 0.7134 23 AccelerometerBiasDecayFactor 0.7134 23 ZeroVelocityConstraintNoise 0.7122 23 GPSPositionNoise 0.7122 23 GPSVelocityNoise 0.7122 24 GyroscopeNoise 0.7081 24 AccelerometerNoise 0.7080 24 GyroscopeBiasNoise 0.7080 24 GyroscopeBiasDecayFactor 0.7080 24 AccelerometerBiasNoise 0.7080 24 AccelerometerBiasDecayFactor 0.7080 24 ZeroVelocityConstraintNoise 0.7080 24 GPSPositionNoise 0.7080 24 GPSVelocityNoise 0.7072 25 GyroscopeNoise 0.7009 25 AccelerometerNoise 0.7009 25 GyroscopeBiasNoise 0.7009 25 GyroscopeBiasDecayFactor 0.7007 25 AccelerometerBiasNoise 0.7007 25 AccelerometerBiasDecayFactor 0.7007 25 ZeroVelocityConstraintNoise 0.7005 25 GPSPositionNoise 0.6997 25 GPSVelocityNoise 0.6997 26 GyroscopeNoise 0.6912 26 AccelerometerNoise 0.6906 26 GyroscopeBiasNoise 0.6906 26 GyroscopeBiasDecayFactor 0.6906 26 AccelerometerBiasNoise 0.6906 26 AccelerometerBiasDecayFactor 0.6906 26 ZeroVelocityConstraintNoise 0.6896 26 GPSPositionNoise 0.6896 26 GPSVelocityNoise 0.6896 27 GyroscopeNoise 0.6840 27 AccelerometerNoise 0.6831 27 GyroscopeBiasNoise 0.6831 27 GyroscopeBiasDecayFactor 0.6831 27 AccelerometerBiasNoise 0.6831 27 AccelerometerBiasDecayFactor 0.6831 27 ZeroVelocityConstraintNoise 0.6818 27 GPSPositionNoise 0.6816 27 GPSVelocityNoise 0.6816 28 GyroscopeNoise 0.6816 28 AccelerometerNoise 0.6809 28 GyroscopeBiasNoise 0.6809 28 GyroscopeBiasDecayFactor 0.6809 28 AccelerometerBiasNoise 0.6809 28 AccelerometerBiasDecayFactor 0.6809 28 ZeroVelocityConstraintNoise 0.6804 28 GPSPositionNoise 0.6802 28 GPSVelocityNoise 0.6802 29 GyroscopeNoise 0.6793 29 AccelerometerNoise 0.6785 29 GyroscopeBiasNoise 0.6785 29 GyroscopeBiasDecayFactor 0.6785 29 AccelerometerBiasNoise 0.6785 29 AccelerometerBiasDecayFactor 0.6785 29 ZeroVelocityConstraintNoise 0.6778 29 GPSPositionNoise 0.6773 29 GPSVelocityNoise 0.6773 30 GyroscopeNoise 0.6773 30 AccelerometerNoise 0.6769 30 GyroscopeBiasNoise 0.6769 30 GyroscopeBiasDecayFactor 0.6769 30 AccelerometerBiasNoise 0.6769 30 AccelerometerBiasDecayFactor 0.6769 30 ZeroVelocityConstraintNoise 0.6769 30 GPSPositionNoise 0.6769 30 GPSVelocityNoise 0.6769
Fuse the sensor data using the tuned filter. Obtain estimated pose and orientation.
N = size(sensorData,1); qEstTuned = quaternion.zeros(N,1); posEstTuned = zeros(N,3); for ii=1:N predict(filter,Accelerometer(ii,:),Gyroscope(ii,:)); if all(~isnan(GPSPosition(ii,1))) fusegps(filter, GPSPosition(ii,:), ... tunedNoise.GPSPositionNoise,GPSVelocity(ii,:), ... tunedNoise.GPSVelocityNoise); end [posEstTuned(ii,:),qEstTuned(ii,:)] = pose(filter); end
Compute the RMS errors.
orientationErrorTuned = rad2deg(dist(qEstTuned,Orientation)); rmsOrientationErrorTuned = sqrt(mean(orientationErrorTuned.^2))
rmsOrientationErrorTuned = 1.6857
positionErrorTuned = sqrt(sum((posEstTuned-Position).^2,2)); rmsPositionErrorTuned = sqrt(mean(positionErrorTuned.^2))
rmsPositionErrorTuned = 1.6667
Visualize the results.
figure; t = (0:N-1)./filter.IMUSampleRate; subplot(2,1,1) plot(t,positionErrorTuned,'b'); title("Tuned insfilterNonholonomic" + newline + ... "Euclidean Distance Position Error") xlabel('Time (s)'); ylabel('Position Error (meters)') subplot(2,1,2) plot(t,orientationErrorTuned,'b'); title("Orientation Error") xlabel('Time (s)'); ylabel('Orientation Error (degrees)');
Input Arguments
filter
— Filter object
infilterAsync
object
Filter object, specified as an
insfilterNonholonomic
object.
measureNoise
— Measurement noise
structure
Measurement noise, specified as a structure. The function uses the measurement noise input as the initial guess for tuning the measurement noise. The structure must contain these fields:
Field name | Description |
---|---|
GPSPositionNoise | Variance of GPS position noise, specified as a scalar in m2 |
GPSVelocityNoise | Variance of GPS velocity noise, specified as a scalar in (m/s)2 |
Data Types: struct
sensorData
— Sensor data
table
Sensor data, specified as a table
. In each row, the sensor data
is specified as:
Accelerometer
— Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.Gyroscope
— Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.GPSPosition
— GPS position data, specified as a 1-by-3 vector of latitude in degrees, longitude in degrees, and altitude in meters.GPSVelocity
— GPS velocity data, specified as a 1-by-3 vector of scalars in m/s.
If the GPS sensor does not produce complete measurements, specify the
corresponding entry for GPSPosition
and/or
GPSVelocity
as NaN
. If you set the
Cost
property of the tuner configuration input,
config
, to Custom
, then you can use other data
types for the sensorData
input based on your choice.
Data Types: table
groundTruth
— Ground truth data
table
Ground truth data, specified as a table. In each row, the table can optionally contain any of these variables:
Orientation
— Orientation from the navigation frame to the body frame, specified as aquaternion
or a 3-by-3 rotation matrix.Position
— Position in navigation frame, specified as a 1-by-3 vector of scalars in meters.Velocity
— Velocity in navigation frame, specified as a 1-by-3 vector of scalars in m/s.GyroscopeBias
— Gyroscope delta angle bias in body frame, specified as a 1-by-3 vector of scalars in rad/s.AccelerometerBias
— Accelerometer delta angle bias in body frame, specified as a 1-by-3 vector of scalars in m2/s.
The function processes each row of the sensorData
and
groundTruth
tables sequentially to calculate the state estimate
and RMS error from the ground truth. State variables not present in
groundTruth
input are ignored for the comparison. The
sensorData
and the groundTruth
tables must
have the same number of rows.
If you set the Cost
property of the tuner configuration input,
config
, to Custom
, then you can use other data
types for the groundTruth
input based on your choice.
Data Types: table
config
— Tuner configuration
tunerconfig
object
Tuner configuration, specified as a
tunerconfig
object.
Output Arguments
tunedMeasureNoise
— Tuned measurement noise
structure
Tuned measurement noise, returned as a structure. The structure contains these fields.
Field name | Description |
---|---|
GPSPositionNoise | Variance of GPS position noise, specified as a scalar in m2 |
GPSVelocityNoise | Variance of GPS velocity noise, specified as a scalar in (m/s)2 |
Data Types: struct
References
[1] Abbeel, Pieter, et al. “Discriminative Training of Kalman Filters.” Robotics: Science and Systems I, Robotics: Science and Systems Foundation, 2005. DOI.org (Crossref), doi:10.15607/RSS.2005.I.038.
Version History
Introduced in R2020b
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)