mAPObjectDetectionMetric
Description
Use an mAPObjectDetectionMetric
object to track the mean average
precision (mAP) metric when you train an object detector.
You can specify metrics options for training by using these arguments of the trainingOptions
(Deep Learning Toolbox) function:
Metrics
— Specify which metrics to use during training.Plots
— To plot metrics during training, specify as"training-progress"
.ValidationData
— Specify this argument to additionally plot and record the metric values for the validation data.Verbose
— To output the metric values to the Command Window, specify as true.
Creation
Description
metric = mAPObjectDetectionMetric
creates a default mean average
precision (mAP) metric to use when training an object detector.
When specified to the Metrics
(Deep Learning Toolbox) argument of the trainingOptions
(Deep Learning Toolbox) function, the default
mAPObjectDetectionMetric
object is equivalent to specifying
Metrics
as "mAP50"
.
metric = mAPObjectDetectionMetric(
specifies the Name=Value
)Name
and OverlapThreshold
properties, used for metric calculation, using
name-value arguments.
For example, Name="mAP50"
sets the mean average precision as the
metric to calculate.
Properties
Version History
Introduced in R2024a
See Also
trainingOptions
(Deep Learning Toolbox) | aucMetric
(Deep Learning Toolbox) | trainYOLOXObjectDetector
| trainYOLOv4ObjectDetector
| dlnetwork
(Deep Learning Toolbox) | trainnet
(Deep Learning Toolbox)