Simple Matlab Random Number Generation

1 次查看(过去 30 天)
I have to get 5 random numbers a1, a2, a3, a4, a5 where each a1, a2, a3, a4, a5 should be between [-0.5, 0.5] and sum i.e. a1 + a2 + a3 + a4 + a5 = 1.
How should I do it?
  4 个评论
Sam Da
Sam Da 2011-2-27
We have to make sure that such combination as [.5 .5 .5 .5 .5] doesn't happen.
Paulo Silva
Paulo Silva 2011-2-28
I deleted my answer (the one that was accepted but it wasn't the best one) and voted on Bruno's and Matt's answers.
Please reselect (Sam or someone who can (admins?!)) the best answer, thank you.

请先登录,再进行评论。

采纳的回答

chris hinkle
chris hinkle 2011-2-27
Create 5 arrays that have all possible combinations of these numbers then generate a random number that is between 1 and length of array and then use that value as the index for the array and viola, there's your number. The size of these arrays can be controlled by the resolution you go to.

更多回答(2 个)

Bruno Luong
Bruno Luong 2011-2-27
To generate true uniform distribution, the correct method is not quite straightforward. I strongly recommend Roger Stafford's FEX,
http://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
  3 个评论
the cyclist
the cyclist 2011-2-27
Agreed that this is the definitive answer. Specifically for Sam's solution:
X = randfixedsum(5,10000,1,-0.5,0.5);

请先登录,再进行评论。


Matt Tearle
Matt Tearle 2011-2-27
How about a brute-force approach?
ntot = 0;
n = 10000;
x = zeros(n,5);
while ntot<n
r = rand(100,4)-0.5;
r5 = 1 - sum(r,2);
idx = (r5>-0.5) & (r5<0.5);
tmp = [r(idx,:),r5(idx)];
nidx = min(size(tmp,1),n-ntot);
x(ntot+1:ntot+nidx,:) = tmp(1:nidx,:);
ntot = ntot + nidx;
end
  1 个评论
the cyclist
the cyclist 2011-2-28
My first reaction to this solution was that, as a rejection method (with a loop, no less!), it would be much slower than Roger's method. The reality is that is does comparably well, speed-wise. I haven't done a full-blown comparison, but I think the reason is two-fold. First, you "semi-vectorized" by pulling chunks of random numbers at a time. Second, and I think more importantly, the accept/reject fraction is pretty good. (It might not be so favorable otherwise, like if the marginals were on [0,1] and still had to sum to 1.)
This solution is highly intuitive, and I believe leads to marginal distributions and correlations between summands that are identical to Roger's solution.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by