Info
This question is locked. 请重新打开它进行编辑或回答。
Explanation of the matlab code
28 次查看(过去 30 天)
显示 更早的评论
Hi I foun this 'extract' of a matlab code on the internet. Can someone explain to me line by line whats happening? Im REALLY in need of help.
*
% ------------- % This is code to make the edge detecting filter % ----%
function filter=gaussfilt(N)
% calculate alpha so the filter fills all N points
alpha=N;
first=-(1-N/2)*exp(-(1-N/2)^2/alpha);
count=0;
while first<.1*(-(1530/4000*N-N/2)*exp(-(1530/4000*N-N/2)^2/alpha))
count=count+1;
alpha=N*500*count;
first=-(1-N/2)*exp(-(1-N/2)^2/alpha);
end
for n=1:N
filter(n)=-(n-N/2)*exp(-(n-N/2)^2/alpha); % d/dt of a gaussian
end
filter=filter/sum(abs(filter)); % normalization
return
8 个评论
Md Ibrahim
2020-10-18
编辑:Walter Roberson
2023-11-9
vmax=8;
vmin=-vmax;
del=(vmax-vmin)/L;
part=vmin:del:vmax; % level are between vmin and vmax with difference of del
code=vmin-(del/2):del:vmax+(del/2); % Contain Quantized values
[ind,q]=quantiz(s,part,code); % Quantization process
% ind contain index number and q contain quantized values
l1=length(ind);
l2=length(q);
for i=1:l1
if(ind(i)~=0) % To make index as binary decimal so started from 0 to N
ind(i)=ind(i)-1;
end
i=i+1;
end
for i=1:l2
if(q(i)==vmin-(del/2)) % To make quantize value in between the levels
q(i)=vmin+(del/2);
end
end
subplot(3,1,3);
stem(q);grid on; % Display the Quantize values
title('Quantized Signal');
ylabel('Amplitude--->');
xlabel('Time--->');
Murthy
2023-1-12
% Load the voice signal [voice, fs] = audioread('stomp.mp3');
% Add sinusoidal interference at 1500Hz t = (0:length(voice)-1)/fs; sin_interference = 0.1*sin(2*pi*1500*t); corrupted_voice = voice , sin_interference;
% Design FIR null filter n = 100; % Filter length f = [0 0.7 0.75 1]; % Normalized frequency bands a = [1 1 0 0]; % Amplitude at each band b = firpm(n, f, a);
% Filter the corrupted signal to recover the original voice signal recovered_voice = filter(b, 1, corrupted_voice);
% Play the original, corrupted, and recovered voice signals sound(voice, fs); pause(1); sound(corrupted_voice, fs); pause(10); sound(recovered_voice, fs); pause(50) % Plot the original, corrupted, and recovered voice signals figure; subplot(3,1,1); plot(voice); title('Original Voice Signal'); subplot(3,1,2); plot(corrupted_voice); title('Corrupted Voice Signal'); subplot(3,1,3); plot(recovered_voice); title('Recovered Voice Signal');
% Plot the frequency response of the null filter figure; freqz(b, 1); title('Frequency Response of Null Filter');
采纳的回答
Muthu Annamalai
2013-6-19
Your code calculates a filter kernel. I haven't run the code, but, it seems to me a kind of Gaussian filter, with some normalizations.
It could be rewritten like,
function filter=gaussfilt(N)
% calculate alpha so the filter fills all N points
alpha=N;
first=-(1-N/2)*exp(-(1-N/2)^2/alpha);
count=0;
% find the standard deviation for the Gaussian
while first<.1*(-(1530/4000*N-N/2)*exp(-(1530/4000*N-N/2)^2/alpha))
count=count+1;
alpha=N*500*count;
first=-(1-N/2)*exp(-(1-N/2)^2/alpha);
end
% calculate the filter kernel
n=1:N
filter =-(n-N/2).*exp(-(n-N/2).^2/alpha);
%normalize kernel & return
HTH
2 个评论
Usama
2023-4-7
编辑:Walter Roberson
2023-11-9
H1_y= (I./(2*pi.*((X-r*cos((n-1)*2*pi/N)).^2+(Y-r*sin((n-1)*2*pi/N)).^2))).*(X-r*cos((n-1)*2*pi/N)).*...
(cos((n-1)*2*pi/N));
更多回答(5 个)
varshini rebala
2015-3-19
Can any one explain me what is happing in this code ?
% Selected Mapping (SLM)is one of the techniques used for % peak-to-average power ratio (PAPR) reduction in OFDM systems. % In this .m file it is simulated for a QPSK modulated, 64-subband % OFDM symbols.
clc clear
load ofdm_100000 % this is a .mat file containing 100000 QPSK modulated, % 64-element OFDM symbols. It is available with the % partial_transmit_sequence.m file, previously submitted % by the auther, for free download at the 'file exchange' % web page.
NN=10000; % the test is achieved on 10000 OFDM symbols only. It is % possible to use all of the 100000 symbols, but it will % take more time. N=64; % number of subbands L=4; % oversampling factor C=16; % number of OFDM symbol candidates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % phase factor matrix [B] generation p=[1 -1 j -j]; % phase factor possible values randn('state', 12345); B=randsrc(C,N,p); % generate N-point phase factors for each one of the % C OFDM candidates %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:NN % calculate papr of original ofdm time_domain_signal=abs(ifft([ofdm_symbol(i,1:32) zeros(1,(L-1)*N) ofdm_symbol(i,33:64)])); meano=mean(abs(time_domain_signal).^2); peako=max(abs(time_domain_signal).^2); papro(i)=10*log10(peako/meano);
% B*ofdm symbol
p=[];
for k=1:C
p=[p; B(k,:).*ofdm_symbol(i,:)];
end
% Transform Pi to Time Domain and find paprs
for k=1:C
pt(k,:)=abs(ifft([p(k,1:32) zeros(1,(L-1)*N) p(k,33:64)]));
papr(k)=10*log10(max(abs(pt(k,:)).^2)/mean(abs(pt(k,:)).^2));
end
% find papr_min
papr_min(i)=min(papr);
end
figure [cy,cx]=ccdf(papro,0.1); semilogy(cx,cy) % CCDF of PAPR of the original OFDM hold on [cy,cx]=ccdf(papr_min,0.1); semilogy(cx,cy,'r') % CCDF of the modified OFDM (by SLM)
0 个评论
Sombaran Gupta
2015-4-13
Can anyone explain me from the third line till the end of this code..?? a=imread('kmeans.jpg'); imshow(255-rgb2gray(a)); b=reshape(double(255-rgb2gray(a)),[],1); [idx,c]=kmeans(b,2,'emptyaction','singleton'); Fin_a=reshape(idx,[size(rgb2gray(a))]); [ind1, ind2]=find(Fin_a(:,:)==2); [ind3, ind4]=find(Fin_a(:,:)==1); figure(); imshow(255-rgb2gray(a)); hold on if(length(ind1)<length(ind3)) scatter(ind2,ind1,'g'); else scatter(ind4,ind3,'g');a end
0 个评论
Tanzila Minhaj
2019-9-29
编辑:Walter Roberson
2023-11-9
Can anyone help me understanding the code?
function [sigma] = constitutive_Armstrong_Frederick (e, E, sigma_y, H_k, H_nl)
% The function reconstructs the trend of the stress-strain curve
% according to the constitutive link of Armstrong & Frederick
% e = deformation vector
% E = Young's modulus [Pa]
% sigma_y = yield stress [Pa]
% H_k = instant kinematic work hardening parameter [Pa]
% H_nl = hardening parameter by Armstrong & Frederick [Pa]
% Data initialization
sigma (1) = 0;
alpha (1) = 0;
state (1) = 0;
for n = 1: length (e) -1
% Stress calculation by elastic prediction
sigma_e = sigma (n) + E * (s (n + 1) -e (n));
% Increased effort assessed in the elastic prediction phase
dsigma_e = sigma_e-sigma (n);
% Purified elastic prediction of back stress
sigma_e_tilde = sigma_e-alpha (n);
% Evaluation of the yield function to less than a tolerance
fi (n) = abs (sigma (n) -alpha (n)) - sigma_y;
tol = 0.001;
if abs (fi (n)) <toll
fi (n) = 0;
end
% Recognition of the elastic / plastic phase by the function of
% yield and the direction of deformation
if fi (n) == 0 && (e (n + 1) -e (n)) * (e (n) -e (n-1))> 0
% Plastic phase
state (n + 1) = 1;
% Sign of tensions (+ = traction, - = compression)
sign = sign (dsigma_e);
% Increase in the plastic dlambda multiplier
dlambda = (a * sigma_e_tilde-sigma_y) / (a * (E + H_k) -H_nl * alpha (n));
% Increase in plastic deformation
de_pl = a * dlambda;
% Increase in back stress
Dalfa = H_k * de_pl-H_nl * abs (de_pl) * alpha (n);
% Back stress
alpha (n + 1) = alpha (n) + Dalfa;
% Current voltage
sigma (n + 1) = sign * sigma_y alpha + (n + 1);
else
% Elastic phase
state (n + 1) = 0;
sigma (n + 1) = sigma_e;
de_pl = 0;
alpha (n + 1) = alpha (n);
end
end
end
0 个评论
Ayshath Afra
2020-4-5
Can anyone help me understanding the code?
How to obtain the read cbir function
0 个评论
Arun das H A
2023-11-7
clear all;
clf('reset');
cam = webcam(); % Create a webcam object
right = imread('RIGHT1.jpg');
left = imread('LEFT1.jpg');
noface = imread('no_face1.jpg');
straight = imread('STRAIGHT1.jpg');
detector = vision.CascadeObjectDetector(); % Create a face detector using Viola-Jones
detector1 = vision.CascadeObjectDetector('EyePairSmall'); % Create an eyepair detector
while true
vid = snapshot(cam); % Get a snapshot from the webcam
vid = rgb2gray(vid); % Convert to grayscale
img = flip(vid, 2); % Flip the image horizontally
bbox = step(detector, img); % Creating bounding boxes using detector
if ~isempty(bbox)%if face exists
biggest_box = 1;
for i = 1:size(bbox, 1)%find the biggest face
if bbox(i, 3) > bbox(biggest_box, 3)
biggest_box = i;
end
end
faceImage = imcrop(img, bbox(biggest_box, :)); % Extract the face from the image
bboxeyes = step(detector1, faceImage); % locations of he eye pair using detector
subplot(2,2,1), subimage(img); hold on; % Display full image
for i = 1:size(bbox,1)%draw all the regions that contain face
rectangle('position', bbox(i, :), 'lineWidth', 2, 'edgeColor', 'y');
end
subplot(2,2,3), subimage(faceImage); % Display face image
if ~isempty(bboxeyes)%check if eyepair is available
biggest_box_eyes = 1;
for i = 1:size(bboxeyes, 1)%find the biggest eye pair
if bboxeyes(i, 3) > bboxeyes(biggest_box_eyes, 3)
biggest_box_eyes = i;
end
end
bboxeyeshalf = [bboxeyes(biggest_box_eyes, 1), bboxeyes(biggest_box_eyes, 2), bboxeyes(biggest_box_eyes, 3)/3, bboxeyes(biggest_box_eyes, 4)];%resize the eyepair width in half
eyesImage = imcrop(faceImage, bboxeyeshalf(1, :)); % Extract the half eyepair from the face image
eyesImage = imadjust(eyesImage); % Adjust contrast
r = bboxeyeshalf(1, 4) / 4;
[centers, radii, metric] = imfindcircles(eyesImage, [floor(r - r/4) floor(r + r/2)], 'ObjectPolarity', 'dark', 'Sensitivity', 0.93); % Hough Transform
[M, I] = sort(radii, 'descend');
eyesPositions = centers;
subplot(2,2,2), subimage(eyesImage); hold on;
viscircles(centers, radii,'EdgeColor','b');
if ~isempty(centers)
pupil_x = centers(1);
disL = abs(0 - pupil_x);%disatance from left edge to center point
disR = abs(bboxeyes(1,3)/3 - pupil_x);%distance right edge to center point
subplot(2,2,4);
if disL > disR + 16
subimage(right);
elseif disR > disL
subimage(left);
else
subimage(straight);
end
end
end
else
subplot(2,2,4);
subimage(noface);
end
end
1 个评论
Walter Roberson
2023-11-9
I do not understand how this code will help anyone to understand how the posted gaussfilt function works??
This question is locked.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Digital Filtering 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!