Main Content

hornConicalCorrugated

Create conical corrugated-horn antenna

Since R2020a

Description

The default hornConicalCorrugated object creates a conical corrugated-horn antenna with grooves covering the inner surface of the cone, resonating around 9.68 GHz. These antennas are widely used as feed horns for dish reflector antennas as they have smaller side lobes and low cross-polarization level.

Top, side, and cross-sectional view of a conical corrugated-horn antenna element showing the antenna parameters and the feed location.

Creation

Description

ant = hornConicalCorrugated creates a corrugated conical-horn antenna with default property values. The default dimensions are chosen for an operating frequency of around 9.68 GHz.

ant = hornConicalCorrugated(Name,Value) sets properties using one or more name-value pairs. For example, ant = hornConicalCorrugated('Radius',1), creates a conical corrugated-horn antenna with a radius of 1 meter.

example

Properties

expand all

Radius of the waveguide, specified as a real-valued scalar in meters.

Example: 'Radius',0.760

Example: ant.Radius = 0.760

Data Types: double

Height of the waveguide, specified as a real-valued scalar in meters.

Example: 'WaveguideHeight',0.0340

Example: ant.WaveguideHeight = 0.0340

Data Types: double

Height of the feed, specified as a real-valued scalar in meters.

Example: 'FeedHeight',0.0085

Example: ant.FeedHeight = 0.0085

Data Types: double

Width of the feed, specified as a real-valued scalar in meters.

Example: 'FeedWidth',0.0200

Example: ant.FeedWidth = 0.0200

Data Types: double

Signed distance of the feed along the y-axis, specified as a real-valued scalar in meters.

Example: 'FeedOffset',0.03627

Example: ant.FeedOffset = 0.3627

Data Types: double

Height of the cone, specified as a real-valued scalar in meters.

Example: 'ConeHeight',0.0540

Example: ant.ConeHeight = 0.0540

Data Types: double

Radius of the cone aperture, specified as a real-valued scalar in meters.

Example: 'ApertureRadius',0.0560

Example: ant.ApertureRadius = 0.0790

Data Types: double

Distance between two successive corrugations, specified as a real-valued scalar in meters.

Example: 'Pitch',0.0060

Example: ant.Pitch = 0.0090

Data Types: double

Distance of first corrugation from waveguide, specified as a real-valued scalar in meters.

Example: 'FirstCorrugatedDistance',0.0360

Example: ant.FirstCorrugatedDistance = 0.0190

Data Types: double

Corrugation width, specified as a real-valued scalar in meters.

Example: 'CorrugateWidth',0.0058

Example: ant.CorrugateWidth = 0.0019

Data Types: double

Corrugation depth, specified as a real-valued scalar in meters.

Example: 'CorrugateDepth',0.0560

Example: ant.CorrugateDepth = 0.0790

Data Types: double

Type of the metal used as a conductor, specified as a metal material object. You can choose any metal from the MetalCatalog or specify a metal of your choice. For more information, see metal. For more information on metal conductor meshing, see Meshing.

Example: m = metal('Copper'); 'Conductor',m

Example: m = metal('Copper'); ant.Conductor = m

Lumped elements added to the antenna feed, specified as a lumped element object. You can add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more information, see lumpedElement.

Example: 'Load',lumpedelement. lumpedelement is the object for the load created using lumpedElement.

Example: ant.Load = lumpedElement('Impedance',75)

Tilt angle of the antenna in degrees, specified as a scalar or vector. For more information, see Rotate Antennas and Arrays.

Example: 90

Example: Tilt=[90 90],TiltAxis=[0 1 0;0 1 1] tilts the antenna at 90 degrees about the two axes defined by the vectors.

Data Types: double

Tilt axis of the antenna, specified as one of these values:

  • Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the vector starts at the origin and lies along the specified points on the x-, y-, and z-axes.

  • Two points in space, specified as a 2-by-3 matrix corresponding to two three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points.

  • "x", "y", or "z" to describe a rotation about the x-, y-, or z-axis, respectively.

For more information, see Rotate Antennas and Arrays.

Example: [0 1 0]

Example: [0 0 0;0 1 0]

Example: "Z"

Data Types: double | string

Object Functions

axialRatioCalculate and plot axial ratio of antenna or array
bandwidthCalculate and plot absolute bandwidth of antenna or array
beamwidthBeamwidth of antenna
chargeCharge distribution on antenna or array surface
currentCurrent distribution on antenna or array surface
designDesign prototype antenna or arrays for resonance around specified frequency or create AI-based antenna from antenna catalog objects
efficiencyCalculate and plot radiation efficiency of antenna or array
EHfieldsElectric and magnetic fields of antennas or embedded electric and magnetic fields of antenna element in arrays
feedCurrentCalculate current at feed for antenna or array
impedanceCalculate and plot input impedance of antenna or scan impedance of array
infoDisplay information about antenna, array, or platform
memoryEstimateEstimate memory required to solve antenna or array mesh
meshMesh properties of metal, dielectric antenna, or array structure
meshconfigChange meshing mode of antenna, array, custom antenna, custom array, or custom geometry
msiwriteWrite antenna or array analysis data to MSI planet file
numCorrugationsToPitchCalculate pitch for specified corrugations
optimizeOptimize antenna or array using SADEA optimizer
patternPlot radiation pattern and phase of antenna or array or embedded pattern of antenna element in array
patternAzimuthAzimuth plane radiation pattern of antenna or array
patternElevationElevation plane radiation pattern of antenna or array
peakRadiationCalculate and mark maximum radiation points of antenna or array on radiation pattern
rcsCalculate and plot monostatic and bistatic radar cross section (RCS) of platform, antenna, or array
resonantFrequencyCalculate and plot resonant frequency of antenna
returnLossCalculate and plot return loss of antenna or scan return loss of array
showDisplay antenna, array structures, shapes, or platform
sparametersCalculate S-parameters for antenna or array
stlwriteWrite mesh information to STL file
vswrCalculate and plot voltage standing wave ratio (VSWR) of antenna or array element

Examples

collapse all

Create a conical corrugated-horn antenna object with the cone height set to 0.09 m

ant = hornConicalCorrugated(ConeHeight=0.09);
show(ant)

Figure contains an axes object. The axes object with title hornConicalCorrugated antenna element, xlabel x (mm), ylabel y (mm) contains 3 objects of type patch, surface. These objects represent PEC, feed.

Plot the radiation pattern of the antenna at 9.62 GHz.

figure
pattern(ant,9.62e9)

Figure contains 2 axes objects and other objects of type uicontrol. Axes object 1 contains 3 objects of type patch, surface. Hidden axes object 2 contains 17 objects of type surface, line, text, patch.

References

[1] Jadhav, Rohini.P, Vinothkurnar Javnrakash Dongre, Arunkumar Heddallikar. "Design of X-Band Conical Horn Antenna Using Coaxial Feed and Improved Design Technique for Bandwidth Enhancement". In International Conference on Computing, Communication, Control, and Automation (ICCUBEA), 1-6. Pune, India: ICCUBEA 2017.

Version History

Introduced in R2020a