genqammod
General quadrature amplitude modulation (QAM)
Syntax
Description
Examples
Estimate Symbol Rate for General QAM Modulation in AWGN Channel
Transmit and receive data using a nonrectangular 16-ary constellation in the presence of Gaussian noise. Show the scatter plot of the noisy constellation and estimate the symbol error rate (SER) for two different SNRs.
Create a 16-QAM constellation based on the V.29 standard for telephone-line modems.
c = [-5 -5i 5 5i -3 -3-3i -3i 3-3i 3 3+3i 3i -3+3i -1 -1i 1 1i]; sigpower = pow2db(mean(abs(c).^2)); M = length(c);
Generate random symbols.
data = randi([0 M-1],2000,1);
Modulate the data by using the genqammod
function. General QAM modulation is necessary because the custom constellation is not rectangular.
modData = genqammod(data,c);
Pass the signal through an AWGN channel with a 20 dB SNR.
rxSig = awgn(modData,20,sigpower);
Display a scatter plot of the received signal and the reference constellation c
.
h = scatterplot(rxSig); hold on scatterplot(c,[],[],'r*',h) grid hold off
Demodulate the received signal by using the genqamdemod
function. Determine the number of symbol errors and the SER.
demodData = genqamdemod(rxSig,c); [numErrors,ser] = symerr(data,demodData)
numErrors = 4
ser = 0.0020
Repeat the transmission and demodulation process with an AWGN channel with a 10 dB SNR. Determine the SER for the reduced SNR. As expected, the performance degrades when the SNR is decreased.
rxSig = awgn(modData,10,sigpower); demodData = genqamdemod(rxSig,c); [numErrors,ser] = symerr(data,demodData)
numErrors = 457
ser = 0.2285
General QAM Modulation and Demodulation
Create the points that describe a hexagonal constellation.
inphase = [1/2 1 1 1/2 1/2 2 2 5/2]; quadr = [0 1 -1 2 -2 1 -1 0]; inphase = [inphase;-inphase]; inphase = inphase(:); quadr = [quadr;quadr]; quadr = quadr(:); const = inphase + 1i*quadr;
Plot the constellation.
h = scatterplot(const);
Generate input data symbols. Modulate the symbols using this constellation.
x = [3 8 5 10 7]; y = genqammod(x,const);
Demodulate the modulated signal, y
.
z = genqamdemod(y,const);
Plot the modulated signal in same figure.
hold on; scatterplot(y,1,0,'ro',h); legend('Constellation','Modulated signal'); hold off;
Determine the number of symbol errors between the demodulated data to the original sequence.
numErrs = symerr(x,z)
numErrs = 0
Input Arguments
X
— Message signal
scalar | vector | matrix | numeric array | dlarray
object
Message signal, specified as a scalar, vector, matrix, numeric array, or a dlarray
(Deep Learning Toolbox)
object. For more information, see Array Support. The message signal
must consist of integers in the range
[0,length
(const
) – 1]. If X
is a matrix with multiple rows, the function processes the columns independently.
Data Types: double
| single
| fi
| int8
| int16
| uint8
| uint16
const
— Signal mapping
complex vector
Signal mapping, specified as a complex vector.
Data Types: double
| single
| fi
| int8
| int16
| uint8
| uint16
Complex Number Support: Yes
Output Arguments
Y
— Complex envelope
scalar | vector | matrix | 3-D array
Complex envelope, returned as a scalar, vector, matrix, or 3-D array of numeric
values. The length of Y
is the same as the length of input
X
.
Data Types: double
| single
| fi
| int8
| int16
| uint8
| uint16
More About
Array Support
The genqammod function supports input signals represented in a
numeric array, dlarray
(Deep Learning Toolbox), or
gpuArray
(Parallel Computing Toolbox). If inputs are specified as a
combination of dlarray
and gpuArray
, the returned
matrix is a dlarray
object on the GPU.
The number of batch observations (NB) is an optional dimension that can be added to the input for all supported data types.
X
— The input data can be a 3-D array, specified as NSym-by-NChan-by-NB array.
NSym is the number of symbols. NChan is the number of channels.
For a list of Communications Toolbox™ features that support dlarray
objects, see AI for Wireless.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function supports GPU array inputs. For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Version History
Introduced before R2006aR2024a: Add deep learning array support
The genqammod
function adds support for dlarray
(Deep Learning Toolbox) object
processing for deep learning applications.
R2024a: Add GPU array support
The genqammod
function adds support for gpuArray
(Parallel Computing Toolbox) object processing to run code on a graphics processing unit
(GPU).
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)