simByMilstein
Description
[
simulates Paths
,Times
,Z
] = simByMilstein(MDL
,NPeriods
)NTrials
sample paths of NVARS
state
variables driven by the CIR
process sources of risk over
NPeriods
consecutive observation periods, approximating
continuous-time Cox-Ingersoll-Ross (CIR) by the Milstein approximation.
simByMilstein
provides a discrete-time approximation of the
underlying generalized continuous-time process. The simulation is derived directly
from the stochastic differential equation of motion; the discrete-time process
approaches the true continuous-time process only in the limit as
DeltaTime
approaches zero.
[
specifies options using one or more name-value pair arguments in addition to the
input arguments in the previous syntax.Paths
,Times
,Z
] = simByMilstein(___,Name=Value
)
You can perform quasi-Monte Carlo simulations using the name-value arguments for
MonteCarloMethod
, QuasiSequence
, and
BrownianMotionMethod
. For more information, see Quasi-Monte Carlo Simulation.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
More About
Algorithms
This function simulates any vector-valued SDE of the form
where:
X is an NVars-by-
1
state vector of process variables (for example, short rates or equity prices) to simulate.W is an NBrowns-by-
1
Brownian motion vector.F is an NVars-by-
1
vector-valued drift-rate function.G is an NVars-by-NBrowns matrix-valued diffusion-rate function.
simByEuler
simulates NTrials
sample
paths of NVars
correlated state variables driven by
NBrowns
Brownian motion sources of risk over
NPeriods
consecutive observation periods, using the Euler
approach to approximate continuous-time stochastic processes.
Consider the process X satisfying a stochastic differential equation of the form.
The attempt of including a term of O(dt) in the drift refines the Euler scheme and results in the algorithm derived by Milstein [1].
References
[1] Milstein, G.N. "A Method of Second-Order Accuracy Integration of Stochastic Differential Equations."Theory of Probability and Its Applications, 23, 1978, pp. 396–401.
Version History
Introduced in R2023a