Park Transform
Implement abc to dq0 transform
Libraries:
Simscape /
Electrical /
Control /
Mathematical Transforms
Description
The Park Transform block converts the time-domain components of a three-phase system in an abc reference frame to direct, quadrature, and zero components in a rotating reference frame. The block can preserve the active and reactive powers with the powers of the system in the abc reference frame by implementing an invariant version of the Park transform. For a balanced system, the zero component is equal to zero.
You can configure the block to align the a-axis of the three-phase system to either the d- or q-axis of the rotating reference frame at time, t = 0. The figures show the direction of the magnetic axes of the stator windings in an abc reference frame and a rotating dq0 reference frame where:
The a-axis and the q-axis are initially aligned.
The a-axis and the d-axis are initially aligned.
In both cases, the angle θ = ωt, where:
θ is the angle between the a and q axes for the q-axis alignment or the angle between the a and d axes for the d-axis alignment.
ω is the rotational speed of the d-q reference frame.
t is the time, in s, from the initial alignment.
The figures show the time-response of the individual components of equivalent balanced abc and dq0 for an:
Alignment of the a-phase vector to the q-axis
Alignment of the a-phase vector to the d-axis
Equations
The Park Transform block implements the transform for an a-phase to q-axis alignment as
where:
a, b, and c are the components of the three-phase system in the abc reference frame.
d and q are the components of the two-axis system in the rotating reference frame.
0 is the zero component of the two-axis system in the stationary reference frame.
For a power invariant a-phase to q-axis alignment, the block implements the transform using this equation:
For an a-phase to d-axis alignment, the block implements the transform using this equation:
The block implements a power invariant a-phase to d-axis alignment as
Examples
Ports
Input
Output
Parameters
References
[1] Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of Electric Machinery and Drive Systems. Piscatawy, NJ: Wiley-IEEE Press, 2013.
Extended Capabilities
Version History
Introduced in R2017b