copularnd
Copula random numbers
Description
Examples
Generate Correlated Data Using the Inverse cdf
Generate correlated random data from a beta distribution using a bivariate Gaussian copula with Kendall's tau rank correlation equal to -0.5.
Compute the linear correlation parameter from the rank correlation value.
rng default % For reproducibility tau = -0.5; rho = copulaparam('Gaussian',tau)
rho = -0.7071
Use a Gaussian copula to generate a two-column matrix of dependent random values.
u = copularnd('gaussian',rho,100);
Each column contains 100 random values between 0 and 1, inclusive, sampled from a continuous uniform distribution.
Create a scatterhist
plot to visualize the random numbers generated using the copula.
figure scatterhist(u(:,1),u(:,2))
The histograms show that the data in each column of the copula has a marginal uniform distribution. The scatterplot shows that the data in the two columns is negatively correlated.
Use the inverse cdf function betainv
to transform each column of the uniform marginal distributions into random numbers from a beta distribution. In the first column, the first shape parameter A is equal to 1, and a second shape parameter B is equal to 2. In the second column, the first shape parameter A is equal to 1.5, and a second shape parameter B is equal to 2.
b = [betainv(u(:,1),1,2), betainv(u(:,2),1.5,2)];
Create a scatterhist
plot to visualize the correlated beta distribution data.
figure scatterhist(b(:,1),b(:,2))
The histograms show the marginal beta distributions for each variable. The scatterplot shows the negative correlation.
Verify that the sample has a rank correlation approximately equal to the initial value for Kendall's tau.
tau_sample = corr(b,'type','kendall')
tau_sample = 2×2
1.0000 -0.5135
-0.5135 1.0000
The sample rank correlation of -0.5135 is approximately equal to the -0.5 initial value for tau.
Input Arguments
rho
— Linear correlation parameters
scalar values | matrix of scalar values
Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.
If
rho
is a p-by-p correlation matrix, then the output argumentu
is an n-by-p matrix.If
rho
is a scalar correlation coefficient, then the output argumentu
is an n-by-2 matrix.
Data Types: single
| double
n
— Number of random vectors to return
positive scalar value
Number of random vectors to return, specified as a positive scalar value.
If you specify the copula type as
'Gaussian'
or't'
, andrho
is a p-by-p correlation matrix, thenu
is an n-by-p matrix.If you specify the copula type as
'Gaussian'
or't'
, andrho
is a scalar correlation coefficient, thenu
is an n-by-2 matrix.If you specify the copula type as
'Clayton'
,'Frank'
, or'Gumbel'
, thenu
is an n-by-2 matrix.
Data Types: single
| double
nu
— Degrees of freedom
positive integer value
Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single
| double
family
— Bivariate Archimedean copula family
'Clayton'
| 'Frank'
| 'Gumbel'
Bivariate Archimedean copula family, specified as one of the following.
'Clayton' | Clayton copula |
'Frank' | Frank copula |
'Gumbel' | Gumbel copula |
alpha
— Bivariate Archimedean copula parameter
scalar value
Bivariate Archimedean copula parameter, specified as a scalar
value. Permitted values for alpha
depend on the
specified copula family.
Copula Family | Permitted Alpha Values |
---|---|
'Clayton' | [0,∞) |
'Frank' | (-∞,∞) |
'Gumbel' | [1,∞) |
Data Types: single
| double
Output Arguments
u
— Copula random numbers
matrix of scalar values
Copula random numbers, returned as a matrix of scalar values.
Each column of u
is a sample from a Uniform(0,1)
marginal
distribution.
If you specify the copula type as
'Gaussian'
or't'
, andrho
is a p-by-p correlation matrix, thenu
is an n-by-p matrix.If you specify the copula type as
'Gaussian'
or't'
, andrho
is a scalar correlation coefficient, thenu
is an n-by-2 matrix.If you specify the copula type as
'Clayton'
,'Frank'
, or'Gumbel'
, thenu
is an n-by-2 matrix.
Version History
Introduced in R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)