removeTerms
Remove terms from linear regression model
Description
Examples
Input Arguments
Output Arguments
More About
Algorithms
removeTerms
treats a categorical predictor as follows:A model with a categorical predictor that has L levels (categories) includes L – 1 indicator variables. The model uses the first category as a reference level, so it does not include the indicator variable for the reference level. If the data type of the categorical predictor is
categorical
, then you can check the order of categories by usingcategories
and reorder the categories by usingreordercats
to customize the reference level. For more details about creating indicator variables, see Automatic Creation of Dummy Variables.removeTerms
treats the group of L – 1 indicator variables as a single variable. If you want to treat the indicator variables as distinct predictor variables, create indicator variables manually by usingdummyvar
. Then use the indicator variables, except the one corresponding to the reference level of the categorical variable, when you fit a model. For the categorical predictorX
, if you specify all columns ofdummyvar(X)
and an intercept term as predictors, then the design matrix becomes rank deficient.Interaction terms between a continuous predictor and a categorical predictor with L levels consist of the element-wise product of the L – 1 indicator variables with the continuous predictor.
Interaction terms between two categorical predictors with L and M levels consist of the (L – 1)*(M – 1) indicator variables to include all possible combinations of the two categorical predictor levels.
You cannot specify higher-order terms for a categorical predictor because the square of an indicator is equal to itself.
Alternative Functionality
Use
stepwiselm
to specify terms in a starting model and continue improving the model until no single step of adding or removing a term is beneficial.Use
addTerms
to add specific terms to a model.Use
step
to optimally improve a model by adding or removing terms.
Extended Capabilities
Version History
Introduced in R2012a