Deep Learning Object Detector
Libraries:
Computer Vision Toolbox /
Analysis & Enhancement
Description
The Deep Learning Object Detector block predicts bounding boxes, class
labels, and scores for the input image by using the trained object detector specified through
the block parameter. This block allows loading of a pretrained object detector into the
Simulink® model from a MAT file or from a MATLAB® function. This block provides a graphical interface for using the detector
objects in Simulink. To enable some parameters of the Deep Learning Object Detector
block you must choose an object detector that supports those parameters. For example, using a
yolov2ObjectDetector
object with this block enables you to select
parameters similar to the name-value arguments of the associated detect
object
function.
Examples
Lane and Vehicle Detection in Simulink Using Deep Learning
Use deep convolutional neural networks inside a Simulink® model to perform lane and vehicle detection. This example takes the frames from a traffic video as an input, outputs two lane boundaries that correspond to the left and right lanes of the ego vehicle, and detects vehicles in the frame.
(Deep Learning Toolbox)
Ports
Input
Image — Image data
array
An H-by-W-by-C numeric array, where H, W, and C are the height, width, and number of channels of the image, respectively. Only one image per time step is allowed as input.
Output
Bboxes — Locations of objects detected
matrix
Locations of the objects detected within the input image, returned as an M-by-4 or an M-by-5 matrix. M is the number of bounding boxes detected in the image. You can put an upper bound to the size M by specifying the Maximum Number of Detections parameter.
The table describes the format of bounding boxes.
Bounding Box | Description |
---|---|
Axis-aligned rectangle |
Defined in spatial coordinates as an M-by-4 numeric matrix with rows of the form [x y w h], where:
|
Rotated rectangle |
Defined in spatial coordinates as an M-by-5 numeric matrix with rows of the form [xctr yctr w h yaw], where:
|
For more information, see Datastores for Deep Learning (Deep Learning Toolbox).
Labels — Labels for bounding boxes
vector
Labels for the bounding boxes, returned as an M-by-1 enumerated vector. M is the number of bounding boxes detected in the image.
Scores — Detection scores
vector
Detection confidence scores for each label, returned as an M-by-1 vector. M is the number of bounding boxes detected in the image. A higher score indicates higher confidence in the detection.
Parameters
Detector — Source for trained detector object
Detector from MAT file
(default) | Detector from MATLAB function
Select the source for the detector object from these options:
Detector from MAT file
— Import a detector object from a MAT file. For example, select a MAT file containing ayolov2ObjectDetector
object.Detector from MATLAB function
— Import a detector object from a MATLAB function. For example, specify the functionvehicleDetectorYOLOv2
, which returns a trainedyolov2ObjectDetector
object.
The imported detector must be one of these supported objects:
rcnnObjectDetector
fastRCNNObjectDetector
fasterRCNNObjectDetector
rtmdetObjectDetector
ssdObjectDetector
yolov2ObjectDetector
yolov3ObjectDetector
yolov4ObjectDetector
yoloxObjectDetector
Programmatic Use
Block Parameter:
Detector |
Type: character vector, string |
Values:
Detector from MAT file' | 'Detector from MATLAB
function' |
Default:
Detector from MAT file' |
File path — MAT file containing detector object
untitled.mat
(default) | MAT file name
This parameter specifies the name of the MAT file that contains the detector object to load. If the file is not on the MATLAB path, use the Browse button to locate the file.
Dependencies
To enable this parameter, set the Detector parameter to
Detector from MAT file
.
Programmatic Use
Block Parameter:
DetectorFilePath |
Type: character vector, string |
Values: MAT file path or name |
Default:
'untitled.mat'
|
MATLAB function — MATLAB function name
untitled
(default) | MATLAB function name
This parameter specifies the name of the MATLAB function that returns a trained object detector. For example, specify the
function vehicleDetectorYOLOv2
, which returns a trained
yolov2ObjectDetector
object, or specify a custom function.
Dependencies
To enable this parameter, set the Detector parameter to
Detector from MATLAB function
.
Programmatic Use
Block Parameter:
DetectorFunction |
Type: character vector, string |
Values: MATLAB function name |
Default:
'untitled' |
Region of interest — Search region of interest
vector of the form [x
y
width
height]
Specify the search region of interest as vector of the form [x y width height]. The vector specifies the upper-left corner and size of a region in pixels.
Dependencies
To enable this parameter, select the Specify region of interest parameter.
Programmatic Use
Block Parameter:
ROI |
Type: character vector, string |
Values: character vector specified as
'[x y width
height]' |
Default:
'[1 1 100 100]' |
Detection threshold — Detection threshold
scalar in the range [0, 1]
Specify the detection threshold as scalar in the range [0, 1]. Detections that have scores lower than this threshold value are removed. To reduce false positives, increase this value.
Dependencies
To enable this parameter, you must use a detector that supports the
Detection threshold parameter. For example, use a
yolov2ObjectDetector
object.
Programmatic Use
Block Parameter:
Threshold |
Type: character vector, string |
Values: scalar |
Default:
'0.5' |
Number of Strongest Regions — Maximum number of strongest region proposals
2000
(default) | positive integer
Specify the maximum number of strongest region proposals as an integer. Reduce this
value to speed up processing at the cost of detection accuracy. To use all region
proposals, specify this parameter as Inf
.
Dependencies
To enable this parameter, use a detector that supports the Number of
Strongest Regions parameter. For example, use an
rcnnObjectDetector
object.
Programmatic Use
Block Parameter:
NumStrongestRegions |
Type: character vector, string |
Values: integer |
Default:
'2000' |
Maximum Region Size — Maximum region size
vector of the form [height
width]
Specify the maximum region size as a vector of the form [height
width]. Units are in pixels. The maximum region size defines the size
of the largest region containing the object. For example, [50
50
] sets the size of the largest region containing the object to
50
-by-50
pixels. To reduce computation time, set
this value to the known maximum region size for the objects that can be detected in the
input test images.
Dependencies
To enable this parameter
Select the Specify maximum region size parameter.
Use a detector that supports the Maximum Region Size parameter. For example, use a
yolov2ObjectDetector
object.
Programmatic Use
Block Parameter:
MaxSize |
Type: character vector, string |
Values: character vector specified as
'[height width]' |
Default:
'[50 50]' |
Minimum Region Size — Minimum region size
vector of the form [height
width]
Specify the minimum region size as a vector of the form [height
width]. Units are in pixels. The minimum region size defines the size
of the smallest region containing the object. For example, [1
1
] sets the size of the smallest region containing the object to
1
-by-1
pixels.
Dependencies
To enable this parameter
Select the Specify minimum region size parameter.
Use a detector that supports the Minimum Region Size parameter. For example, use a
yolov2ObjectDetector
object.
Programmatic Use
Block Parameter:
MinSize |
Type: character vector, string |
Values: character vector specified as
'[height width]' |
Default:
'[1 1]' |
Maximum Number of Detections — Maximum number of detections
500
(default) | positive integer
Specify the maximum number of detections as a positive integer. This value is the upper bound for the number of detections.
Programmatic Use
Block Parameter:
MaxDetections |
Type: character vector, string |
Values: integer |
Default:
'500' |
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Usage notes and limitations:
The Language parameter in the Configuration Parameters > Code Generation general category must be set to
C++
.For a list of networks and layers supported for code generation, see Networks and Layers Supported for Code Generation (MATLAB Coder).
To generate code for the Math Kernel Library for Deep Neural Networks (MKL-DNN) target library with YOLOv3, YOLOv4, or RTMDet as the object detectors, set the
MaxStackSize
andTLCOptions
model parameters to a higher value. For example, you can set theMaxStackSize
andTLCOptions
parameter values to 'inf
' using the following syntax.>> set_param(modelName,'MaxStackSize','inf') >> set_param(modelName,'TLCOptions','-aMaxStackVariableSize=inf')
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
Usage notes and limitations:
The Language parameter in the Configuration Parameters > Code Generation general category must be set to
C++
.For a list of networks and layers supported for CUDA® code generation, see Supported Networks, Layers, and Classes (GPU Coder).
Version History
Introduced in R2021bR2024b: Support to RTMDet object detector
Starting in R2024b, Deep Learning Object Detector
block supports Real-Time Model for
object Detection (RTMDet). You can import a pretrained RTMDet object detector object,
rtmdetObjectDetector
to perform object detection.
R2024b: Support for YOLOX object detector
Starting in R2024b, Deep Learning Object Detector
block supports You Only Look Once X
(YOLOX) object detection. You can import a pretrained YOLOX object detector object, yoloxObjectDetector
to perform object detection.
See Also
Objects
rcnnObjectDetector
|fastRCNNObjectDetector
|fasterRCNNObjectDetector
|ssdObjectDetector
|yolov2ObjectDetector
|yolov3ObjectDetector
|yolov4ObjectDetector
|yoloxObjectDetector
Blocks
- Image Classifier (Deep Learning Toolbox) | Predict (Deep Learning Toolbox)
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)