yoloxObjectDetector
Description
The yoloxObjectDetector
object creates a You Only Look Once X
(YOLOX) one-stage, real-time, anchor-free object detector for detecting objects in an image of
arbitrary size. Using this object, you can:
Create a pretrained YOLOX object detector by using YOLOX deep learning networks trained on the COCO data set.
Create a custom YOLOX object detector by using a pretrained or untrained YOLOX deep learning network.
Note
This functionality requires Deep Learning Toolbox™ and the Automated Visual Inspection Library for Computer Vision Toolbox™. You can install the Automated Visual Inspection Library for Computer Vision Toolbox from Add-On Explorer. For more information about installing add-ons, see Get and Manage Add-Ons.
Creation
Syntax
Description
creates a
YOLOX object detector trained to detect 80 object classes from the COCO data set using a
CSP-Darknet-53 network.detector
= yoloxObjectDetector
creates a pretrained YOLOX object detector by using YOLOX deep learning networks trained
on the COCO data set.detector
= yoloxObjectDetector(name
)
creates a pretrained YOLOX object detector and configures it to perform transfer learning
using a specified set of object classes. For optimal results, you must train the detector
on new training images before performing detection. detector
= yoloxObjectDetector(name
,classes
)
Use the trainYOLOXObjectDetector
function to train the detector before performing
object detection.
sets the detector
= yoloxObjectDetector(___,Name=Value
)ModelName
and InputSize
properties of the object, and specifies the NormalizationStatistics
of the detector, using name-value arguments in
addition to any combination of input arguments from previous syntaxes. For example,
ModelName="customDetector"
sets the name of the object detector to
"customDetector"
.
Input Arguments
Properties
Object Functions
detect | Detect objects using YOLOX object detector |
Examples
References
[1] Ge, Zheng, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. “YOLOX: Exceeding YOLO Series in 2021.” arXiv, August 5, 2021. http://arxiv.org/abs/2107.08430.