跟踪和运动估计
运动估计和跟踪是活动识别、交通监控、汽车安全和监督等许多计算机视觉应用中的关键活动。
Computer Vision Toolbox™ 提供视频跟踪算法,如连续自适应均值漂移 (CAMShift) 和 Kanade-Lucas-Tomasi (KLT)。您可以使用这些算法来跟踪单个目标,也可将其用作更复杂的跟踪系统中的构建块。该工具箱还提供一个多目标跟踪框架,其中包括卡尔曼滤波器,以及将目标检测分配到跟踪的匈牙利算法。
运动估计是确定块在相邻视频帧之间的运动的过程。此工具箱包括运动估计算法,如光流、块匹配和模板匹配。这些算法用于创建运动向量,这些运动向量可与整个图像、块、任意补片或单个像素相关。对于块和模板匹配,寻找最佳匹配项的评估度量包括均方误差 (MSE)、均值绝对偏差 (MAD)、最大绝对差 (MaxAD)、绝对差之和 (SAD) 以及平方差之和 (SSD)。
函数
vision.BinaryFileReader | Read video data from binary files |
vision.BinaryFileWriter | Write binary video data to files |
vision.DeployableVideoPlayer | Display video |
vision.VideoPlayer | Play video or display image |
vision.VideoFileWriter | Write video frames and audio samples to video file |
VideoReader | 创建对象以读取视频文件 |
assignDetectionsToTracks | Assign detections to tracks for multiobject tracking |
bbox2points | Convert rectangle to corner points list |
configureKalmanFilter | Create Kalman filter for object tracking |
vision.KalmanFilter | Correction of measurement, state, and state estimation error covariance |
vision.HistogramBasedTracker | Histogram-based object tracking |
vision.PointTracker | Track points in video using Kanade-Lucas-Tomasi (KLT) algorithm |
vision.BlockMatcher | Estimate motion between images or video frames |
vision.TemplateMatcher | Locate template in image |
reidentificationNetwork | Re-identification deep learning network for re-identifying and tracking objects (自 R2024a 起) |
extractReidentificationFeatures | Extract object re-identification (ReID) features from image (自 R2024a 起) |
trainReidentificationNetwork | Train re-identification (ReID) deep learning network (自 R2024a 起) |
evaluateReidentificationNetwork | Evaluate re-identification network using cumulative matching characteristic (CMC) and mean average precision (mAP) metrics (自 R2024a 起) |
reidentificationMetrics | Re-identification (ReID) quality metrics (自 R2024a 起) |
opticalFlow | Object for storing optical flow matrices |
opticalFlowRAFT | Estimate optical flow using RAFT deep learning algorithm (自 R2024b 起) |
opticalFlowFarneback | Object for estimating optical flow using Farneback method |
opticalFlowHS | Object for estimating optical flow using Horn-Schunck method |
opticalFlowLK | Object for estimating optical flow using Lucas-Kanade method |
opticalFlowLKDoG | Object for estimating optical flow using Lucas-Kanade derivative of Gaussian method |
vision.BlockMatcher | Estimate motion between images or video frames |
vision.TemplateMatcher | Locate template in image |
insertMarker | Insert markers in image or video |
insertShape | Insert shapes in image or video |
insertObjectAnnotation | Annotate truecolor or grayscale image or video |
insertText | Insert text in image or video |
imshow | 显示图像 |
imshowpair | 比较图像之间的差异 |
主题
- Multiple Object Tracking
Locate a moving object or multiple objects over time in a video stream.
精选示例
Motion-Based Multiple Object Tracking
Perform automatic detection and motion-based tracking of moving objects in a video from a stationary camera.
Multi-Object Tracking with DeepSORT
Integrate appearance features from a re-Identification (Re-ID) deep neural network with a multi-object tracker.
Visual Tracking of Occluded and Unresolved Objects
Resolve challenging tracking scenarios when objects are occluded or when they are in close proximity to each other.
Implement Simple Online and Realtime Tracking
Implement the Simple Online and Realtime (SORT) object tracking algorithm using the Computer Vision Toolbox and the Sensor Fusion and Tracking Toolbox™.
Automate Labeling of Objects in Video Using RAFT Optical Flow
Use a pretrained RAFT optical flow estimation network to propagate a predefined object mask from one frame to the next in a video sequence.
- 自 R2024b 起
- 打开实时脚本
Reidentify People Throughout a Video Sequence Using ReID Network
Track people throughout a video sequence using re-identification with a residual network.
Automate Ground Truth Labeling for Object Tracking and Re-Identification
Create an automation algorithm to automatically label data for object tracking and for object re-identification.
Convert Ground Truth Labeling Data for Object Re-Identification
Convert a groundTruth
object to the re-identification training data format.
Convert Ground Truth Labeling Data for Object Tracking
Convert a groundTruth
object to the trackCLEARmetrics
truth format.
Track a Face in Scene
Track a face using a minimum Eigen features detection function and a point tracker.
Face Detection and Tracking Using Live Video Acquisition
Automatically detect and track a face in a live video stream, using the KLT algorithm.
Face Detection and Tracking Using the KLT Algorithm
Automatically detect and track a face using feature points. The approach in this example keeps track of the face even when the person tilts his or her head, or moves toward or away from the camera.
Use Kalman Filter for Object Tracking
Use the vision.KalmanFilter
object and configureKalmanFilter
function to track objects.
Import Camera-Based Datasets in MOT Challenge Format for Object Tracking
Read camera image sequences and convert the ground truth and detections to Sensor Fusion and Tracking Toolbox formats using a custom dataset.
Multi-Object Tracking and Human Pose Estimation
Detect multiple people, track them, and estimate their body poses in a video by using pretrained deep learning networks and a global nearest-neighbor (GNN) assignment tracking approach.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)