Main Content

cloverleaf

Create three-petal cloverleaf antenna

Description

Use the default cloverleaf object to create a three-petal cloverleaf antenna resonating around 5.6 GHz. It has a wideband circular polarization and an omnidirectional antenna.

Creation

Description

cl = cloverleaf creates a three-petal cloverleaf antenna with default property values. The default dimensions are chosen for an operating frequency of around 5.6 GHz.

example

cl = cloverleaf(Name=Value) sets properties using one or more name-value arguments. Name is the property name and Value is the corresponding value. You can specify several name-value arguments in any order as Name1=Value1,...,NameN=ValueN. Properties that you do not specify, retain their default values.

For example, cl = cloverleaf(NumPetals=4) creates a five-petal cloverleaf antenna.

Properties

expand all

Number of petals, specified as a scalar.

Example: 4

Data Types: double

Total length of leaf, specified as a scalar in meters.

Example: 0.0025

Data Types: double

Leaf strip width, specified as a scalar in meters.

Example: 0.001

Data Types: double

Leaf flare angle, specified as a scalar in degrees.

Example: 100

Data Types: double

Type of the metal used as a conductor, specified as a metal material object. You can choose any metal from the MetalCatalog or specify a metal of your choice. For more information, see metal. For more information on metal conductor meshing, see Meshing.

Example: m = metal('Copper'); 'Conductor',m

Example: m = metal('Copper'); ant.Conductor = m

Lumped elements added to the antenna feed, specified as a lumped element object. You can add a load anywhere on the surface of the antenna. By default, it is at the origin. For more information, see lumpedElement.

Example: 'Load',lumpedelement. lumpedelement is the object for the load created using lumpedElement.

Example: cl.Load = lumpedElement('Impedance',75)

Data Types: double

Tilt angle of the antenna in degrees, specified as a scalar or vector. For more information, see Rotate Antennas and Arrays.

Example: 90

Example: Tilt=[90 90],TiltAxis=[0 1 0;0 1 1] tilts the antenna at 90 degrees about the two axes defined by the vectors.

Data Types: double

Tilt axis of the antenna, specified as one of these values:

  • Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the vector starts at the origin and lies along the specified points on the x-, y-, and z-axes.

  • Two points in space, specified as a 2-by-3 matrix corresponding to two three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points.

  • "x", "y", or "z" to describe a rotation about the x-, y-, or z-axis, respectively.

For more information, see Rotate Antennas and Arrays.

Example: [0 1 0]

Example: [0 0 0;0 1 0]

Example: "Z"

Data Types: double | string

Object Functions

axialRatioCalculate and plot axial ratio of antenna or array
bandwidthCalculate and plot absolute bandwidth of antenna or array
beamwidthBeamwidth of antenna
chargeCharge distribution on antenna or array surface
currentCurrent distribution on antenna or array surface
designDesign prototype antenna or arrays for resonance around specified frequency or create AI-based antenna from antenna catalog objects
efficiencyCalculate and plot radiation efficiency of antenna or array
EHfieldsElectric and magnetic fields of antennas or embedded electric and magnetic fields of antenna element in arrays
feedCurrentCalculate current at feed for antenna or array
impedanceCalculate and plot input impedance of antenna or scan impedance of array
infoDisplay information about antenna, array, or platform
memoryEstimateEstimate memory required to solve antenna or array mesh
meshMesh properties of metal, dielectric antenna, or array structure
meshconfigChange meshing mode of antenna, array, custom antenna, custom array, or custom geometry
msiwriteWrite antenna or array analysis data to MSI planet file
optimizeOptimize antenna or array using SADEA optimizer
patternPlot radiation pattern and phase of antenna or array or embedded pattern of antenna element in array
patternAzimuthAzimuth plane radiation pattern of antenna or array
patternElevationElevation plane radiation pattern of antenna or array
peakRadiationCalculate and mark maximum radiation points of antenna or array on radiation pattern
rcsCalculate and plot monostatic and bistatic radar cross section (RCS) of platform, antenna, or array
resonantFrequencyCalculate and plot resonant frequency of antenna
returnLossCalculate and plot return loss of antenna or scan return loss of array
showDisplay antenna, array structures, shapes, or platform
sparametersCalculate S-parameters for antenna or array
stlwriteWrite mesh information to STL file
vswrCalculate and plot voltage standing wave ratio (VSWR) of antenna or array element

Examples

collapse all

Create and view a default cloverleaf antenna.

cl = cloverleaf
cl = 
  cloverleaf with properties:

      NumPetals: 3
    PetalLength: 0.0515
     PetalWidth: 8.0000e-04
     FlareAngle: 105
      Conductor: [1x1 metal]
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]

show(cl)

Figure contains an axes object. The axes object with title cloverleaf antenna element, xlabel x (mm), ylabel y (mm) contains 10 objects of type patch, surface. These objects represent PEC, feed.

Create a cloverleaf antenna.

cl = cloverleaf;
show(cl);

Figure contains an axes object. The axes object with title cloverleaf antenna element, xlabel x (mm), ylabel y (mm) contains 10 objects of type patch, surface. These objects represent PEC, feed.

Plot the axial ratio of the antenna from 5 GHz to 6 GHz.

freq = linspace(5e9,6e9,101);
axialRatio(cl,freq,0,0);

Figure contains an axes object. The axes object with title Axial Ratio, xlabel Frequency (GHz), ylabel Axial Ratio (dB) contains an object of type line.

The axial ratio plot shows that the antenna supports circular polarization over the entire frequency range.

Version History

Introduced in R2017b