monocone
Description
The default monocone
object creates a monocone antenna on a
circular ground plane resonating around 3.8 GHz. A classical monocone antenna consists
of a cone and a ground plane. To increase the bandwidth of the antenna, you can modify
the antenna by merging the cone with a circular cylinder. By default, the
monocone
object creates the modified version.
Create a classical monocone antenna (without the cylinder on top) using one of these methods:
Set the height of the antenna to equal the sum of the cone height and the feed height.
Set the cone height to equal half of the difference between the total height and the feed height. Then set the radius at the aperture to twice the radius at the junction.
Creation
Description
creates a monocone
antenna with default property values. The default dimensions are chosen for
an operating frequency of around 3.8 GHz. The feed point of this antenna is
located at the center of the ground plane.m
= monocone
sets properties using one or more name-value arguments.
m
= monocone(Name=Value
)Name
is the property name and
Value
is the corresponding value. You can specify
several name-value arguments in any order as
Name1=Value1,...,NameN=ValueN
. Properties that you do
not specify, retain their default values.
For example, m = monocone(Height=0.0560)
creates a
monocone antenna with a total height of 0.0560 meters and default values for
other properties.
Properties
Object Functions
axialRatio | Calculate and plot axial ratio of antenna or array |
bandwidth | Calculate and plot absolute bandwidth of antenna or array |
beamwidth | Beamwidth of antenna |
charge | Charge distribution on antenna or array surface |
coneangle2size | Calculates equivalent cone height, broad radius, and narrow radius |
current | Current distribution on antenna or array surface |
design | Design prototype antenna or arrays for resonance around specified frequency or create AI-based antenna from antenna catalog objects |
efficiency | Calculate and plot radiation efficiency of antenna or array |
EHfields | Electric and magnetic fields of antennas or embedded electric and magnetic fields of antenna element in arrays |
feedCurrent | Calculate current at feed for antenna or array |
impedance | Calculate and plot input impedance of antenna or scan impedance of array |
info | Display information about antenna, array, or platform |
memoryEstimate | Estimate memory required to solve antenna or array mesh |
mesh | Mesh properties of metal, dielectric antenna, or array structure |
meshconfig | Change meshing mode of antenna, array, custom antenna, custom array, or custom geometry |
msiwrite | Write antenna or array analysis data to MSI planet file |
optimize | Optimize antenna or array using SADEA optimizer |
pattern | Plot radiation pattern and phase of antenna or array or embedded pattern of antenna element in array |
patternAzimuth | Azimuth plane radiation pattern of antenna or array |
patternElevation | Elevation plane radiation pattern of antenna or array |
peakRadiation | Calculate and mark maximum radiation points of antenna or array on radiation pattern |
rcs | Calculate and plot monostatic and bistatic radar cross section (RCS) of platform, antenna, or array |
resonantFrequency | Calculate and plot resonant frequency of antenna |
returnLoss | Calculate and plot return loss of antenna or scan return loss of array |
show | Display antenna, array structures, shapes, or platform |
sparameters | Calculate S-parameters for antenna or array |
stlwrite | Write mesh information to STL file |
vswr | Calculate and plot voltage standing wave ratio (VSWR) of antenna or array element |
Examples
References
[1] McDonald, James L., and Dejan S. Filipovic. “On the Bandwidth of Monocone Antennas.” IEEE Transactions on Antennas and Propagation 56, no. 4 (April 2008): 1196–1201. https://doi.org/10.1109/TAP.2008.919226.
Version History
Introduced in R2020a