降阶建模
将深度学习工作流扩展到降阶建模 (ROM) 领域
将 Deep Learning Toolbox™ 用于降阶建模 (ROM) 任务。
降阶建模 (ROM) 是一种技术,它可以通过降低计算复杂度来简化复杂的高保真模型和仿真,同时保持模型的行为和准确度。例如,您可以用经过训练的神经网络替换 Simulink 模型中的计算密集型子系统,以实现逼真的预测。
函数
exportNetworkToSimulink | Generate Simulink model that contains deep learning layer blocks and subsystems that correspond to deep learning layer objects (自 R2024b 起) |
模块
Predict | 使用经过训练的深度学习神经网络预测响应 |
Stateful Predict | Predict responses using a trained recurrent neural network (自 R2021a 起) |
主题
- Physical System Modeling Using LSTM Network in Simulink
This example shows how to create a reduced order model (ROM) that acts as a virtual sensor in a Simulink® model using a long short-term memory (LSTM) neural network.
- Reduced Order Modeling Using Continuous-Time Echo State Network
This example shows how to train a continuous-time echo state network (CTESN) model to solve Robertson's equation.
- Generate Deep Learning SI Engine Model (Powertrain Blockset)
Generate a deep learning SI engine model from measured transient engine data.
- Implement Unsupported Deep Learning Layer Blocks
This example shows how to implement layers using Simulink blocks or MATLAB code in a MATLAB Function block.