Mixed-Integer Mean-Variance Portfolio Optimization Problem
This example shows how to solve a mean-variance portfolio optimization problem with constraints in the number of selected assets or conditional (semicontinuous) bounds. To solve this problem, you can use a Portfolio
object along with different mixed integer nonlinear programming (MINLP) solvers.
Mean-Variance Portfolio
Load the returns data in CAPMuniverse.mat
. Then, create a mean-variance Portfolio
object with default constraints and a long-only portfolio whose weights sum to 1
. For this example, you can define the feasible region of weights as
% Load data load CAPMuniverse.mat % Create a mean-variance Portfolio object with default constraints p = Portfolio(AssetList=Assets(1:12)); p = estimateAssetMoments(p,Data(:,1:12)); p = setDefaultConstraints(p);
Include binary variables for this scenario by setting conditional (semicontinuous) bounds. Conditional bounds are those such that or . In this example, for all assets.
% Set conditional bounds condLB = 0.1; condUB = 0.5; p = setBounds(p,condLB,condUB,BoundType="conditional");
Use estimateFrontier
to estimate a set of portfolios on the efficient frontier. The efficient frontier is a curve that shows the trade-off between the return and risk achieved by Pareto-optimal portfolios. For a given return level, the portfolio on the efficient frontier is the one that minimizes the risk while maintaining the desired return. Conversely, for a given risk level, the portfolio on the efficient frontier is the one that maximizes return while maintaining the desired risk level.
% Compute efficient frontier
pwgt = estimateFrontier(p)
pwgt = 12×10
0 0 0.1000 0.1253 0.1745 0.2236 0.2715 0.3327 0.4111 0.5000
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0.1350 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0.1000 0.1450 0.1406 0.1910 0.2344 0.2778 0.3200 0.3726 0.4415 0.5000
0.1000 0.1609 0.1642 0.2121 0.2415 0.2709 0.3085 0.2947 0.1474 0
0.2354 0.1875 0.1290 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0.4296 0.4066 0.3662 0.3717 0.2496 0.1277 0 0 0 0
⋮
% Compute risk and returns of the portfolios on the efficient frontier
[rsk,ret] = estimatePortMoments(p,pwgt)
rsk = 10×1
0.0076
0.0080
0.0085
0.0094
0.0105
0.0117
0.0132
0.0147
0.0168
0.0193
ret = 10×1
0.0008
0.0012
0.0017
0.0021
0.0026
0.0030
0.0034
0.0039
0.0043
0.0048
Plot the weights from the frontier estimation using plotFrontier
. The resulting curve is piece-wise concave with vertical jumps (discontinuities) between the concave intervals.
% Plot efficient frontier
plotFrontier(p,pwgt)
Changing MINLP Solvers
In the previous section, you use the default solver for estimateFrontier
. However, you can solve mixed-integer portfolio problems using any of the three algorithms supported by setSolverMINLP
: OuterApproximation
, ExtendedCP
, and TrustRegionCP
. Furthermore, the OuterApproximation
algorithm accepts an additional name-value argument (ExtendedFormulation
) for Portfolo
problems, which reformulates problems with quadratic functions to work in an extended space that usually decreases the computation time. All algorithms, including the extended formulation variation of the OuterApproximation
algorithm, return the same values within numerical accuracy. The available solvers are:
OuterApproximation
— The default algorithm, which is robust and usually faster thanExtenedCP
OuterApproximation
withExtendedFormulation
set totrue
— A robust algorithm that is usually faster than other algorithms, but only supported forPortfolio
object problemsExtendedCP
— The most robust solver, but usually the slowestTrustRegionCP
— The fastest algorithm, but one that is less robust and may provide suboptimal solutions
For more information on solvers for mixed-integer portfolio problems, see Choose MINLP Solvers for Portfolio Problems.
To change the MINLP solvers, use setSolverMINLP
.
% Select the extended formulation version of 'OuterApproximation' p_EOA = setSolverMINLP(p,'OuterApproximation',... ExtendedFormulation=true); pwgt_EOA = estimateFrontier(p_EOA); [rskEOA,retEOA] = estimatePortMoments(p_EOA,pwgt_EOA); % Select 'TrustRegionCP' as solver p_TR = setSolverMINLP(p,'TrustRegionCP'); pwgt_TR = estimateFrontier(p_TR); [rskTR,retTR] = estimatePortMoments(p_TR,pwgt_TR); % Select 'ExtendedCP' as solver using 'midway' cuts as 'CutGeneration' p_ECP = setSolverMINLP(p,'ExtendedCP','CutGeneration','midway'); pwgt_ECP = estimateFrontier(p_ECP); [rskECP,retECP] = estimatePortMoments(p_ECP,pwgt_ECP);
Compare the returns and risks obtained by the portfolios on the efficient frontier from the different solvers. These are same within a numerical accuracy, where the absolute difference is .
retTable = table(ret,retEOA,retTR,retECP,... 'VariableNames',{'OA','EOA','TR','ECP'})
retTable=10×4 table
OA EOA TR ECP
__________ __________ __________ __________
0.00078336 0.00078336 0.00078334 0.00078348
0.0012267 0.0012267 0.0012267 0.0012268
0.00167 0.00167 0.00167 0.0016701
0.0021133 0.0021133 0.0021133 0.0021134
0.0025566 0.0025566 0.0025566 0.0025567
0.0029999 0.0029999 0.0029999 0.003
0.0034432 0.0034432 0.0034432 0.0034433
0.0038865 0.0038865 0.0038865 0.0038866
0.0043298 0.0043298 0.0043298 0.0043299
0.0047731 0.0047731 0.0047731 0.0047731
rskTable = table(rsk,rskEOA,rskTR,rskECP,... 'VariableNames',{'OA','EOA','TR','ECP'})
rskTable=10×4 table
OA EOA TR ECP
_________ _________ _________ _________
0.0075778 0.0075778 0.0075778 0.0075778
0.0080234 0.0080234 0.0080235 0.0080236
0.0085488 0.0085488 0.0086355 0.008549
0.0094024 0.0094024 0.009405 0.0094025
0.010456 0.010456 0.010456 0.010456
0.011727 0.011727 0.011727 0.011728
0.013155 0.013155 0.013155 0.013155
0.014729 0.014729 0.014729 0.014729
0.016764 0.016764 0.016764 0.016764
0.019273 0.019273 0.019273 0.019273
% Compare risks from the different OuterApproximation formulations
norm(rskTable.OA-rskTable.EOA,Inf) <= 1e-4
ans = logical
1
See Also
estimatePortSharpeRatio
| estimateFrontier
| estimateFrontierByReturn
| estimateFrontierByRisk
Related Examples
- Portfolio Optimization Using Social Performance Measure
- Portfolio Optimization Against a Benchmark
- Solve Problem for Minimum Variance Portfolio with Tracking Error Penalty
- Solve Robust Portfolio Maximum Return Problem with Ellipsoidal Uncertainty
- Risk Parity or Budgeting with Constraints