IncrementalClassificationECOC Fit
Libraries:
Statistics and Machine Learning Toolbox /
Incremental Learning /
Classification /
ECOC
Description
The IncrementalClassificationECOC Fit block fits a configured incremental
error-correcting output codes (ECOC) classification model (incrementalClassificationECOC
) for multiclass classification to streaming
data.
Import an initial ECOC classification object into the block by specifying the name of a
workspace variable that contains the object. The input port x receives a
chunk of predictor data (observations), and the input port y receives a
chunk of responses (labels) to which the model is fit. The output port returns an updated
incrementalClassificationECOC
model mdl. The
optional input port w receives a chunk of observation weights.
Examples
Perform Incremental Learning Using IncrementalClassificationECOC Fit and Predict Blocks
Perform incremental learning with the IncrementalClassificationECOC Fit block and predict labels with the IncrementalClassificationECOC Predict block.
- Since R2024a
- Open Live Script
Configure Simulink Template for Rate-Based Incremental Linear Classification
Configure the Simulink Rate-Based Incremental Learning template to perform incremental linear classification.
- Since R2024a
- Open Live Script
Configure Simulink Template for Conditionally Enabled Incremental Linear Classification
Configure the Simulink Enabled Execution Incremental Learning template to perform incremental linear classification.
- Since R2024a
- Open Live Script
Ports
Input
x — Chunk of predictor data
numeric matrix
Chunk of predictor data to which the model is fit, specified as a numeric matrix.
The orientation of the variables and observations is specified by Predictor data observation
dimension. The default orientation is rows
, which
indicates that the observations in the predictor data are oriented along the rows of
x.
The length of the observation responses y and the number of
observations in x must be equal;
y(
is the
response of observation j (row or column) in
x.j
)
Note
The number of predictor variables in x must be equal to the
NumPredictors
property value of the initial model. If the
number of predictor variables in the streaming data changes from
NumPredictors
, the block issues an error.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
y — Chunk of class labels
numeric vector | logical vector | enumerated vector
Chunk of class labels to which the model is trained, specified as a numeric, logical, or enumerated vector.
The length of the observation responses y and the number of observations in x must be equal; y(
j
) is the response of observation j (row or column) in x.Each label must correspond to one row of the array.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
| enumerated
w — Chunk of observation weights
vector of positive values
Chunk of observation weights, specified as a vector of positive values. The IncrementalClassificationECOC Fit block weights the observations in x with the corresponding values in w. The size of w must be equal to the number of observations in x.
Dependencies
To enable this port, select the check box for Add input port for observation weights on the Main tab of the Block Parameters dialog box.
Data Types: single
| double
Output
mdl — Updated incremental learning model parameters
bus signal
Updated incremental learning model parameters fit to streaming data, returned as a
bus signal (see Composite Signals
(Simulink)).
Parameters
Main
Select initial machine learning model — Initial incremental classification ECOC model
ecocMdl
(default) | incrementalClassificationECOC
model object
Specify the name of a workspace variable that contains the configured
incrementalClassificationECOC
model object. The NumPredictors
property of the initial model must be a positive integer
scalar, and must be equal to the number of predictors in
x.
Programmatic Use
Block Parameter:
InitialLearner |
Type: workspace variable |
Values:
incrementalClassificationECOC model object |
Default:
"ecocMdl" |
Add input port for observation weights — Add second input port for observation weights
off
(default) | on
Select the check box to include the input port w for observation weights in the IncrementalClassificationECOC Fit block.
Programmatic Use
Block Parameter:
ShowInputWeights |
Type: character vector |
Values:
"off" | "on" |
Default:
"off" |
Predictor data observation dimension — Observation dimension of predictor data
rows
(default) | columns
Specify the observation dimension of the predictor data. The default value is
rows
, which indicates that observations in the predictor data are
oriented along the rows of x.
Programmatic Use
Block Parameter:
ObservationsIn |
Type: character vector |
Values:
"rows" | "columns" |
Default:
"rows" |
Sample time (–1 for inherited) — Option to specify sample time
–1
(default) | scalar
Specify the discrete interval between sample time hits or specify another type of sample
time, such as continuous (0
) or inherited (–1
). For more
options, see Types of Sample Time (Simulink).
By default, the IncrementalClassificationECOC Fit block inherits sample time based on the context of the block within the model.
Programmatic Use
Block Parameter:
SystemSampleTime |
Type: string scalar or character vector |
Values: scalar |
Default:
"–1" |
Data Types
Fixed-Point Operational ParametersInteger rounding mode — Rounding mode for fixed-point operations
Floor
(default) | Ceiling
| Convergent
| Nearest
| Round
| Simplest
| Zero
Specify the rounding mode for fixed-point operations. For more information, see Rounding Modes (Fixed-Point Designer).
Block parameters always round to the nearest representable value. To control the rounding of a block parameter, enter an expression into the mask field using a MATLAB® rounding function.
Programmatic Use
Block Parameter:
RndMeth |
Type: character vector |
Values:
"Ceiling" | "Convergent" | "Floor" | "Nearest" | "Round" | "Simplest" |
"Zero" |
Default:
"Floor" |
Saturate on integer overflow — Method of overflow action
off
(default) | on
Specify whether overflows saturate or wrap.
Action | Rationale | Impact on Overflows | Example |
---|---|---|---|
Select this check box
( | Your model has possible overflow, and you want explicit saturation protection in the generated code. | Overflows saturate to either the minimum or maximum value that the data type can represent. | The maximum value that the |
Clear this check box
( | You want to optimize the efficiency of your generated code. You want to avoid overspecifying how a block handles out-of-range signals. For more information, see Troubleshoot Signal Range Errors (Simulink). | Overflows wrap to the appropriate value that the data type can represent. | The maximum value that the |
Programmatic Use
Block Parameter:
SaturateOnIntegerOverflow |
Type: character vector |
Values:
"off" | "on" |
Default:
"off" |
Lock output data type setting against changes by the fixed-point tools — Prevention of fixed-point tools from overriding data type
off
(default) | on
Select this parameter to prevent the fixed-point tools from overriding the data type you specify for the block. For more information, see Use Lock Output Data Type Setting (Fixed-Point Designer).
Programmatic Use
Block Parameter:
LockScale |
Type: character vector |
Values:
"off" | "on" |
Default:
"off" |
Binary learner beta data type — Data type of linear coefficient estimates output
Inherit: auto
(default) | double
| single
| half
| int8
| uint8
| int16
| uint16
| int32
| uint32
| int64
| uint64
| boolean
| fixdt(1,16,0)
| fixdt(1,16,2^0,0)
| <data type expression>
Specify the data type for the linear coefficient estimates (beta) output. The type
can be inherited, specified as an enumerated data
type, or expressed as a data type object such as
Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
BinaryBetaDataTypeStr |
Type: character vector |
Values: "Inherit: auto"
| "double" | "single" |
"half" | "int8" |
"uint8" | "int16" |
"uint16" | "int32" |
"uint32" | "int64" |
"uint64" | "boolean" |
"fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | |
"<data type expression>" |
Default: "Inherit: auto"
|
Binary learner beta data type Minimum — Minimum value of beta for range checking
[]
(default) | scalar
Specify the lower value of the beta output range that Simulink® checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner beta data type Minimum parameter does not saturate or clip the actual beta output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinaryBetaOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner beta data type Maximum — Maximum value of beta for range checking
[]
(default) | scalar
Specify the upper value of the beta output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner beta data type Maximum parameter does not saturate or clip the actual beta output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinaryBetaOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner bias data type — Data type of intercept estimates output
Inherit: auto
(default) | double
| single
| half
| int8
| uint8
| int16
| uint16
| int32
| uint32
| int64
| uint64
| boolean
| fixdt(1,16,0)
| fixdt(1,16,2^0,0)
| <data type expression>
Specify the data type for the intercept estimates (bias) output. The type can be
inherited, specified as an enumerated data type, or
expressed as a data type object such as Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
BinaryBiasDataTypeStr |
Type: character vector |
Values: "Inherit: auto"
| "double" | "single" |
"half" | "int8" |
"uint8" | "int16" |
"uint16" | "int32" |
"uint32" | "int64" |
"uint64" | "boolean" |
"fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | |
"<data type expression>" |
Default: "Inherit: auto"
|
Binary learner bias data type Minimum — Minimum value of bias for range checking
[]
(default) | scalar
Specify the lower value of the bias output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner bias data type Minimum parameter does not saturate or clip the actual bias output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinaryBiasOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner bias data type Maximum — Maximum value of bias for range checking
[]
(default) | scalar
Specify the upper value of the bias output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner bias data type Maximum parameter does not saturate or clip the actual bias output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinaryBiasOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner internal states data type — Data type of binary learner internal states output
Inherit: auto
(default) | double
| single
| half
| int8
| uint8
| int16
| uint16
| int32
| uint32
| int64
| uint64
| boolean
| fixdt(1,16,0)
| fixdt(1,16,2^0,0)
| <data type expression>
Specify the data type for the binary learner internal states output. The type can
be inherited, specified as an enumerated data type,
or expressed as a data type object such as Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
BinaryStatesDataTypeStr |
Type: character vector |
Values: "Inherit: auto"
| "double" | "single" |
"half" | "int8" |
"uint8" | "int16" |
"uint16" | "int32" |
"uint32" | "int64" |
"uint64" | "boolean" |
"fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | |
"<data type expression>" |
Default: "Inherit: auto"
|
Binary learner internal states data type Minimum — Minimum value of binary learner internal states for range checking
[]
(default) | scalar
Specify the lower value of the binary learner internal states range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Programmatic Use
Block Parameter:
BinaryStatesOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner internal states data type Maximum — Maximum value of binary learner internal states for range checking
[]
(default) | scalar
Specify the upper value of the binary learner internal states range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Programmatic Use
Block Parameter:
BinaryStatesOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Prior data type — Data type of prior term
double
(default) | single
| half
| int8
| uint8
| int16
| uint16
| int32
| uint32
| int64
| uint64
| boolean
| fixdt(1,16,0)
| fixdt(1,16,2^0,0)
| <data type expression>
Specify the data type for the internal prior term. The type can be inherited,
specified directly, or expressed as a data type object such as
Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
PriorDataTypeStr |
Type: character vector or string |
Values: "double" |
"single" | "half" |
"int8" | "uint8" |
"int16" | "uint16" |
"int32" | "uint32" |
"int64" | "uint64" |
"boolean" | "fixdt(1,16,0)" |
"fixdt(1,16,2^0,0)" |"<data type
expression>" |
Default: "double"
|
Prior data type Minimum — Minimum value of prior term for range checking
[]
(default) | scalar
Specify the lower value of the prior term range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Prior data type Minimum parameter does not saturate or clip the actual prior term value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
PriorOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Prior data type Maximum — Maximum value of prior term for range checking
[]
(default) | scalar
Specify the upper value of the prior term range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Prior data type Maximum parameter does not saturate or clip the actual prior term value. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
PriorOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner mu data type — Data type of binary learner mu output
Inherit: auto
(default) | double
| single
| half
| int8
| uint8
| int16
| uint16
| int32
| uint32
| int64
| uint64
| boolean
| fixdt(1,16,0)
| fixdt(1,16,2^0,0)
| <data type expression>
Specify the data type for the binary learner mu (predictor means) output. The type
can be inherited, specified as an enumerated data
type, or expressed as a data type object such as
Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter: Binary
MuDataTypeStr |
Type: character vector |
Values: "Inherit: auto"
| "double" | "single" |
"half" | "int8" |
"uint8" | "int16" |
"uint16" | "int32" |
"uint32" | "int64" |
"uint64" | "boolean" |
"fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | |
"<data type expression>" |
Default: "Inherit: auto"
|
Binary learner mu data type Minimum — Minimum value of binary learner mu for range checking
[]
(default) | scalar
Specify the lower value of the binary learner mu range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner mu data type Minimum parameter does not saturate or clip the actual mu output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinaryMuOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner mu data type Maximum — Maximum value of binary learner mu for range checking
[]
(default) | scalar
Specify the upper value of the binary learner mu range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner mu data type Maximum parameter does not saturate or clip the actual mu output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinaryMuOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner sigma data type — Data type of binary learner sigma output
Inherit: auto
(default) | double
| single
| half
| int8
| uint8
| int16
| uint16
| int32
| uint32
| int64
| uint64
| boolean
| fixdt(1,16,0)
| fixdt(1,16,2^0,0)
| <data type expression>
Specify the data type for the binary learner sigma (predictor standard deviations)
output. The type can be inherited, specified as an enumerated data
type, or expressed as a data type object such as
Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter: Binary
SigmaDataTypeStr |
Type: character vector |
Values: "Inherit: auto"
| "double" | "single" |
"half" | "int8" |
"uint8" | "int16" |
"uint16" | "int32" |
"uint32" | "int64" |
"uint64" | "boolean" |
"fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | |
"<data type expression>" |
Default: "Inherit: auto"
|
Binary learner sigma data type Minimum — Minimum value of binary learner sigma for range checking
[]
(default) | scalar
Specify the lower value of the binary learner sigma range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner sigma data type Minimum parameter does not saturate or clip the actual sigma output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinarySigmaOutMin |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Binary learner sigma data type Maximum — Maximum value of binary learner sigma for range checking
[]
(default) | scalar
Specify the upper value of the binary learner sigma range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Note
The Binary learner sigma data type Maximum parameter does not saturate or clip the actual sigma output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
BinarySigmaOutMax |
Type: character vector |
Values: "[]" |
scalar |
Default: "[]" |
Block Characteristics
Data Types |
|
Direct Feedthrough |
|
Multidimensional Signals |
|
Variable-Size Signals |
|
Zero-Crossing Detection |
|
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
Version History
Introduced in R2024a
See Also
Blocks
Objects
Functions
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)