acosh
Symbolic inverse hyperbolic cosine function
Syntax
Description
Examples
Inverse Hyperbolic Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, acosh
returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic cosine function for these numbers. Because these numbers
are not symbolic objects, acosh
returns floating-point results.
A = acosh([-1, 0, 1/6, 1/2, 1, 2])
A = 0.0000 + 3.1416i 0.0000 + 1.5708i 0.0000 + 1.4033i... 0.0000 + 1.0472i 0.0000 + 0.0000i 1.3170 + 0.0000i
Compute the inverse hyperbolic cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acosh
returns unresolved
symbolic calls.
symA = acosh(sym([-1, 0, 1/6, 1/2, 1, 2]))
symA = [ pi*1i, (pi*1i)/2, acosh(1/6), (pi*1i)/3, 0, acosh(2)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 3.1415926535897932384626433832795i,... 1.5707963267948966192313216916398i,... 1.4033482475752072886780470855961i,... 1.0471975511965977461542144610932i,... 0,... 1.316957896924816708625046347308]
Plot Inverse Hyperbolic Cosine Function
Plot the inverse hyperbolic cosine function on the interval from 1 to 10.
syms x fplot(acosh(x),[1 10]) grid on
Handle Expressions Containing Inverse Hyperbolic Cosine Function
Many functions, such as diff
,
int
, taylor
, and rewrite
,
can handle expressions containing acosh
.
Find the first and second derivatives of the inverse hyperbolic cosine function.
Simplify the second derivative by using simplify
.
syms x diff(acosh(x), x) simplify(diff(acosh(x), x, x))
ans = 1/((x - 1)^(1/2)*(x + 1)^(1/2)) ans = -x/((x - 1)^(3/2)*(x + 1)^(3/2))
Find the indefinite integral of the inverse hyperbolic cosine function. Simplify the
result by using simplify
.
int(acosh(x), x)
ans = x*acosh(x) - (x - 1)^(1/2)*(x + 1)^(1/2)
Find the Taylor series expansion of acosh(x)
for x >
1
:
assume(x > 1) taylor(acosh(x), x)
ans = (x^5*3i)/40 + (x^3*1i)/6 + x*1i - (pi*1i)/2
For further computations, clear the assumption on x
by recreating it
using syms
:
syms x
Rewrite the inverse hyperbolic cosine function in terms of the natural logarithm:
rewrite(acosh(x), 'log')
ans = log(x + (x - 1)^(1/2)*(x + 1)^(1/2))
Input Arguments
Version History
Introduced before R2006a