acsch
Symbolic inverse hyperbolic cosecant function
Syntax
Description
Examples
Inverse Hyperbolic Cosecant Function for Numeric and Symbolic Arguments
Depending on its arguments, acsch
returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic cosecant function for these numbers. Because these
numbers are not symbolic objects, acsch
returns floating-point
results.
A = acsch([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3])
A = 0.0000 + 0.5236i Inf + 0.0000i 0.0000 - 1.0472i... 1.4436 + 0.0000i 0.0000 - 1.5708i 0.3275 + 0.0000i
Compute the inverse hyperbolic cosecant function for the numbers converted to
symbolic objects. For many symbolic (exact) numbers, acsch
returns
unresolved symbolic calls.
symA = acsch(sym([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3]))
symA = [ (pi*1i)/6, Inf, -(pi*1i)/3, asinh(2), -(pi*1i)/2, asinh(1/3)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 0.52359877559829887307710723054658i,... Inf,... -1.0471975511965977461542144610932i,... 1.4436354751788103424932767402731,... -1.5707963267948966192313216916398i,... 0.32745015023725844332253525998826]
Plot Inverse Hyperbolic Cosecant Function
Plot the inverse hyperbolic cosecant function on the interval from -10 to 10.
syms x fplot(acsch(x),[-10 10]) grid on
Handle Expressions Containing Inverse Hyperbolic Cosecant Function
Many functions, such as diff
,
int
, taylor
, and
rewrite
, can handle expressions containing
acsch
.
Find the first and second derivatives of the inverse hyperbolic cosecant function:
syms x diff(acsch(x), x) diff(acsch(x), x, x)
ans = -1/(x^2*(1/x^2 + 1)^(1/2)) ans = 2/(x^3*(1/x^2 + 1)^(1/2)) - 1/(x^5*(1/x^2 + 1)^(3/2))
Find the indefinite integral of the inverse hyperbolic cosecant function:
int(acsch(x), x)
ans = x*asinh(1/x) + asinh(x)*sign(x)
Find the Taylor series expansion of acsch(x)
around x =
Inf
:
taylor(acsch(x), x, Inf)
ans = 1/x - 1/(6*x^3) + 3/(40*x^5)
Rewrite the inverse hyperbolic cosecant function in terms of the natural logarithm:
rewrite(acsch(x), 'log')
ans = log((1/x^2 + 1)^(1/2) + 1/x)
Input Arguments
Version History
Introduced before R2006a