asinh
Symbolic inverse hyperbolic sine function
Syntax
Description
Examples
Inverse Hyperbolic Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, asinh
returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic sine function for these numbers. Because these numbers
are not symbolic objects, asinh
returns floating-point
results.
A = asinh([-i, 0, 1/6, i/2, i, 2])
A = 0.0000 - 1.5708i 0.0000 + 0.0000i 0.1659 + 0.0000i... 0.0000 + 0.5236i 0.0000 + 1.5708i 1.4436 + 0.0000i
Compute the inverse hyperbolic sine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asinh
returns
unresolved symbolic calls.
symA = asinh(sym([-i, 0, 1/6, i/2, i, 2]))
symA = [ -(pi*1i)/2, 0, asinh(1/6), (pi*1i)/6, (pi*1i)/2, asinh(2)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -1.5707963267948966192313216916398i,... 0,... 0.16590455026930117643502171631553,... 0.52359877559829887307710723054658i,... 1.5707963267948966192313216916398i,... 1.4436354751788103012444253181457]
Plot Inverse Hyperbolic Sine Function
Plot the inverse hyperbolic sine function on the interval from -10 to 10.
syms x fplot(asinh(x),[-10 10]) grid on
Handle Expressions Containing Inverse Hyperbolic Sine Function
Many functions, such as diff
,
int
, taylor
, and
rewrite
, can handle expressions containing
asinh
.
Find the first and second derivatives of the inverse hyperbolic sine function:
syms x diff(asinh(x), x) diff(asinh(x), x, x)
ans = 1/(x^2 + 1)^(1/2) ans = -x/(x^2 + 1)^(3/2)
Find the indefinite integral of the inverse hyperbolic sine function:
int(asinh(x), x)
ans = x*asinh(x) - (x^2 + 1)^(1/2)
Find the Taylor series expansion of asinh(x)
:
taylor(asinh(x), x)
ans = (3*x^5)/40 - x^3/6 + x
Rewrite the inverse hyperbolic sine function in terms of the natural logarithm:
rewrite(asinh(x), 'log')
ans = log(x + (x^2 + 1)^(1/2))
Input Arguments
Version History
Introduced before R2006a