csch
Symbolic hyperbolic cosecant function
Syntax
Description
Examples
Hyperbolic Cosecant Function for Numeric and Symbolic Arguments
Depending on its arguments, csch
returns
floating-point or exact symbolic results.
Compute the hyperbolic cosecant function for these numbers. Because these numbers are
not symbolic objects, csch
returns floating-point results.
A = csch([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2])
A = -0.2757 + 0.0000i 0.0000 + 1.0000i Inf + 0.0000i... 0.0000 - 1.1547i 0.0000 - 1.2790i 0.0000 - 1.0000i
Compute the hyperbolic cosecant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, csch
returns unresolved symbolic
calls.
symA = csch(sym([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2]))
symA = [ -1/sinh(2), 1i, Inf, -(3^(1/2)*2i)/3, 1/sinh((pi*2i)/7), -1i]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.27572056477178320775835148216303,... 1.0i,... Inf,... -1.1547005383792515290182975610039i,... -1.2790480076899326057478506072714i,... -1.0i]
Plot Hyperbolic Cosecant Function
Plot the hyperbolic cosecant function on the interval from -10 to 10.
syms x fplot(csch(x),[-10 10]) grid on
Handle Expressions Containing Hyperbolic Cosecant Function
Many functions, such as diff
,
int
, taylor
, and rewrite
,
can handle expressions containing csch
.
Find the first and second derivatives of the hyperbolic cosecant function:
syms x diff(csch(x), x) diff(csch(x), x, x)
ans = -cosh(x)/sinh(x)^2 ans = (2*cosh(x)^2)/sinh(x)^3 - 1/sinh(x)
Find the indefinite integral of the hyperbolic cosecant function:
int(csch(x), x)
ans = log(tanh(x/2))
Find the Taylor series expansion of csch(x)
around x =
pi*i/2
:
taylor(csch(x), x, pi*i/2)
ans = ((x - (pi*1i)/2)^2*1i)/2 - ((x - (pi*1i)/2)^4*5i)/24 - 1i
Rewrite the hyperbolic cosecant function in terms of the exponential function:
rewrite(csch(x), 'exp')
ans = -1/(exp(-x)/2 - exp(x)/2)
Input Arguments
Version History
Introduced before R2006a