tanh
Symbolic hyperbolic tangent function
Syntax
Description
Examples
Hyperbolic Tangent Function for Numeric and Symbolic Arguments
Depending on its arguments, tanh
returns
floating-point or exact symbolic results.
Compute the hyperbolic tangent function for these numbers. Because these numbers are not
symbolic objects, tanh
returns floating-point results.
A = tanh([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7])
A = -0.9640 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.5774i... 0.0000 + 1.7321i 0.0000 - 1.2540i
Compute the hyperbolic tangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, tanh
returns unresolved symbolic
calls.
symA = tanh(sym([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7]))
symA = [ -tanh(2), 0, (3^(1/2)*1i)/3, 3^(1/2)*1i, -tanh((pi*2i)/7)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.96402758007581688394641372410092,... 0,... 0.57735026918962576450914878050196i,... 1.7320508075688772935274463415059i,... -1.2539603376627038375709109783365i]
Plot Hyperbolic Tangent Function
Plot the hyperbolic tangent function on the interval from to .
syms x fplot(tanh(x),[-pi pi]) grid on
Handle Expressions Containing Hyperbolic Tangent Function
Many functions, such as diff
,
int
, taylor
, and rewrite
,
can handle expressions containing tanh
.
Find the first and second derivatives of the hyperbolic tangent function:
syms x diff(tanh(x), x) diff(tanh(x), x, x)
ans = 1 - tanh(x)^2 ans = 2*tanh(x)*(tanh(x)^2 - 1)
Find the indefinite integral of the hyperbolic tangent function:
int(tanh(x), x)
ans = log(cosh(x))
Find the Taylor series expansion of tanh(x)
:
taylor(tanh(x), x)
ans = (2*x^5)/15 - x^3/3 + x
Rewrite the hyperbolic tangent function in terms of the exponential function:
rewrite(tanh(x), 'exp')
ans = (exp(2*x) - 1)/(exp(2*x) + 1)
Input Arguments
Version History
Introduced before R2006a