cosh
Symbolic hyperbolic cosine function
Syntax
Description
Examples
Hyperbolic Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, cosh
returns
floating-point or exact symbolic results.
Compute the hyperbolic cosine function for these numbers. Because these numbers
are not symbolic objects, cosh
returns floating-point
results.
A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A = 3.7622 -1.0000 0.8660 -0.6235 -0.0000
Compute the hyperbolic cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, cosh
returns
unresolved symbolic calls.
symA = cosh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA = [ cosh(2), -1, 3^(1/2)/2, -cosh((pi*2i)/7), 0]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 3.7621956910836314595622134777737,... -1.0,... 0.86602540378443864676372317075294,... -0.62348980185873353052500488400424,... 0]
Plot Hyperbolic Cosine Function
Plot the hyperbolic cosine function on the interval from to .
syms x fplot(cosh(x),[-pi pi]) grid on
Handle Expressions Containing Hyperbolic Cosine Function
Many functions, such as diff
,
int
, taylor
, and
rewrite
, can handle expressions containing
cosh
.
Find the first and second derivatives of the hyperbolic cosine function:
syms x diff(cosh(x), x) diff(cosh(x), x, x)
ans = sinh(x) ans = cosh(x)
Find the indefinite integral of the hyperbolic cosine function:
int(cosh(x), x)
ans = sinh(x)
Find the Taylor series expansion of cosh(x)
:
taylor(cosh(x), x)
ans = x^4/24 + x^2/2 + 1
Rewrite the hyperbolic cosine function in terms of the exponential function:
rewrite(cosh(x), 'exp')
ans = exp(-x)/2 + exp(x)/2
Input Arguments
Version History
Introduced before R2006a