iztrans
Inverse Z-transform
Description
iztrans(
returns the Inverse Z-Transform of
F
)F
. By default, the independent variable is
z
and the transformation variable is n
. If
F
does not contain z
,
iztrans
uses the function symvar
.
Examples
Inverse Z-Transform of Symbolic Expression
Compute the inverse Z-transform of
2*z/(z-2)^2
. By default, the inverse transform is in
terms of n
.
syms z F = 2*z/(z-2)^2; iztrans(F)
ans = 2^n + 2^n*(n - 1)
Specify Independent Variable and Transformation Variable
Compute the inverse Z-transform of
1/(a*z)
. By default, the independent and transformation
variables are z
and n
,
respectively.
syms z a F = 1/(a*z); iztrans(F)
ans = kroneckerDelta(n - 1, 0)/a
Specify the transformation variable as m
. If you
specify only one variable, that variable is the transformation variable. The
independent variable is still z
.
syms m iztrans(F,m)
ans = kroneckerDelta(m - 1, 0)/a
Specify both the independent and transformation variables as
a
and m
in the second and third
arguments, respectively.
iztrans(F,a,m)
ans = kroneckerDelta(m - 1, 0)/z
Inverse Z-Transforms Involving Kronecker Delta Function
Compute the inverse Z-transforms of these expressions. The results involve the Kronecker Delta function.
syms n z iztrans(1/z,z,n)
ans = kroneckerDelta(n - 1, 0)
f = (z^3 + 3*z^2)/z^5; iztrans(f,z,n)
ans = kroneckerDelta(n - 2, 0) + 3*kroneckerDelta(n - 3, 0)
Inverse Z-Transform of Array Inputs
Find the inverse Z-transform of the matrix
M
. Specify the independent and transformation variables
for each matrix entry by using matrices of the same size. When the arguments are
nonscalars, iztrans
acts on them element-wise.
syms a b c d w x y z M = [exp(x) 1; sin(y) i*z]; vars = [w x; y z]; transVars = [a b; c d]; iztrans(M,vars,transVars)
ans = [ exp(x)*kroneckerDelta(a, 0), kroneckerDelta(b, 0)] [ iztrans(sin(y), y, c), iztrans(z, z, d)*1i]
If iztrans
is called with both scalar and nonscalar
arguments, then it expands the scalars to match the nonscalars by using scalar
expansion. Nonscalar arguments must be the same size.
syms w x y z a b c d iztrans(x,vars,transVars)
ans = [ x*kroneckerDelta(a, 0), iztrans(x, x, b)] [ x*kroneckerDelta(c, 0), x*kroneckerDelta(d, 0)]
Inverse Z-Transform of Symbolic Function
Compute the Inverse Z-transform of symbolic functions. When the first argument contains symbolic functions, then the second argument must be a scalar.
syms f1(x) f2(x) a b f1(x) = exp(x); f2(x) = x; iztrans([f1, f2],x,[a, b])
ans = [ iztrans(exp(x), x, a), iztrans(x, x, b)]
If Inverse Z-Transform Cannot Be Found
If iztrans
cannot compute the inverse
transform, it returns an unevaluated call.
syms F(z) n F(z) = exp(z); f = iztrans(F,z,n)
f = iztrans(exp(z), z, n)
Return the original expression by using ztrans
.
ztrans(f,n,z)
ans = exp(z)
Input Arguments
More About
Tips
If any argument is an array, then
iztrans
acts element-wise on all elements of the array.If the first argument contains a symbolic function, then the second argument must be a scalar.
To compute the direct Z-transform, use
ztrans
.
Version History
Introduced before R2006a