Main Content

reflectorParabolic

Create parabolic reflector antenna

Description

The default reflectorParabolic object creates a parabolic reflector antenna resonating around 10 GHz. Parabolic reflector antennas are electrically large structures and are at least 10 wavelengths in diameter. These reflectors are used in TV antennas and satellite communications, for example.

Creation

Description

ant = reflectorParabolic creates a dipole-fed parabolic reflector antenna with default property values. The default dimensions are chosen for an operating frequency of around 10 GHz. The reflector is 10λ in diameter, where λ corresponds to the value of wavelength.

example

ant = reflectorParabolic(Name=Value) sets properties using one or more name–value arguments. Name is the property name and Value is the corresponding value. You can specify several name-value arguments in any order as Name1=Value1,...,NameN=ValueN. Properties that you do not specify, retain their default values.

For example, ant = reflectorParabolic(FocalLength=0.5) creates a parabolic reflector antenna with 0.5 meters focal length.

Properties

expand all

Exciter antenna or array type, specified as either:

  • Antenna object from the catalog (except reflector type, cavity type and platform-installed antennas)

  • Array object from the catalog (except conformal and infinite arrays)

  • Custom antennas: customAntennaGeometry, customAntennaMesh, customAntenna

  • Measured pattern data of an antenna or array: measuredAntenna

  • Empty array

To create the reflector backing structure without an exciter, specify this property as an empty array.

Example: horn

Example: linearArray(Element=patchMicrostrip)

Example: customAntenna

Example: measuredAntenna

Example: []

Radius of the parabolic reflector, specified as a positive scalar in meters.

Example: 0.22

Data Types: double

Focal length of the parabolic reflector, specified as a positive scalar in meters.

Example: 0.0850

Data Types: double

Signed distance from the focus of the parabolic reflector, specified as a three-element vector in meters. By default, the antenna exciter is at the focus of the parabola. Using the FeedOffset property, you can place the exciter anywhere on the parabola.

Example: [0.0850 0 0]

Data Types: double

Type of the metal used as a conductor, specified as a metal material object. You can choose any metal from the MetalCatalog or specify a metal of your choice. For more information, see metal. For more information on metal conductor meshing, see Meshing.

Example: metal("Copper")

Lumped elements added to the antenna feed, specified as a lumped element object. For more information, see lumpedElement.

Example: Load=lumpedelement. lumpedelement is the object for the load created using lumpedElement.

Example: lumpedElement(Impedance=75)

Tilt angle of the antenna in degrees, specified as a scalar or vector. For more information, see Rotate Antennas and Arrays.

Example: 90

Example: Tilt=[90 90],TiltAxis=[0 1 0;0 1 1] tilts the antenna at 90 degrees about the two axes defined by the vectors.

Data Types: double

Tilt axis of the antenna, specified as one of these values:

  • Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the vector starts at the origin and lies along the specified points on the x-, y-, and z-axes.

  • Two points in space, specified as a 2-by-3 matrix corresponding to two three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points.

  • "x", "y", or "z" to describe a rotation about the x-, y-, or z-axis, respectively.

For more information, see Rotate Antennas and Arrays.

Example: [0 1 0]

Example: [0 0 0;0 1 0]

Example: "Z"

Data Types: double | string

Solver for antenna analysis, specified as a string. Default solver is "MoM-PO"(Method of Moments-Physical Optics hybrid). Other supported solvers are: "MoM" (Method of Moments), "PO" (Physical optics) or "FMM" (Fast Multipole Method).

Example: SolverType="MoM"

Data Types: string

Object Functions

axialRatioCalculate and plot axial ratio of antenna or array
bandwidthCalculate and plot absolute bandwidth of antenna or array
beamwidthBeamwidth of antenna
chargeCharge distribution on antenna or array surface
currentCurrent distribution on antenna or array surface
designDesign prototype antenna or arrays for resonance around specified frequency or create AI-based antenna from antenna catalog objects
efficiencyCalculate and plot radiation efficiency of antenna or array
EHfieldsElectric and magnetic fields of antennas or embedded electric and magnetic fields of antenna element in arrays
feedCurrentCalculate current at feed for antenna or array
impedanceCalculate and plot input impedance of antenna or scan impedance of array
infoDisplay information about antenna, array, or platform
memoryEstimateEstimate memory required to solve antenna or array mesh
meshMesh properties of metal, dielectric antenna, or array structure
meshconfigChange meshing mode of antenna, array, custom antenna, custom array, or custom geometry
msiwriteWrite antenna or array analysis data to MSI planet file
optimizeOptimize antenna or array using SADEA optimizer
patternPlot radiation pattern and phase of antenna or array or embedded pattern of antenna element in array
patternAzimuthAzimuth plane radiation pattern of antenna or array
patternElevationElevation plane radiation pattern of antenna or array
peakRadiationCalculate and mark maximum radiation points of antenna or array on radiation pattern
rcsCalculate and plot monostatic and bistatic radar cross section (RCS) of platform, antenna, or array
resonantFrequencyCalculate and plot resonant frequency of antenna
returnLossCalculate and plot return loss of antenna or scan return loss of array
showDisplay antenna, array structures, shapes, or platform
solverAccess FMM solver settings for electromagnetic analysis
sparametersCalculate S-parameters for antenna or array
stlwriteWrite mesh information to STL file
vswrCalculate and plot voltage standing wave ratio (VSWR) of antenna or array element

Examples

collapse all

Create and view a default parabolic reflector antenna.

ant = reflectorParabolic
ant = 
  reflectorParabolic with properties:

        Exciter: [1x1 dipole]
         Radius: 0.1500
    FocalLength: 0.0750
     FeedOffset: [0 0 0]
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]
     SolverType: 'MoM-PO'

show(ant)

Figure contains an axes object. The axes object with title reflectorParabolic antenna element, xlabel x (mm), ylabel y (mm) contains 5 objects of type patch, surface. These objects represent PEC, feed.

Plot the radiation pattern of the parabolic reflector at 10 GHz.

pattern(ant,10e9)

Figure contains 2 axes objects and other objects of type uicontrol. Axes object 1 contains 5 objects of type patch, surface. Hidden axes object 2 contains 18 objects of type surface, line, text, patch.

Create a circular array of equiangular spiral antennas.

circA = circularArray(Element=spiralEquiangular,Radius=0.1);

Create a parabolic reflector-backed antenna.

ant = reflectorParabolic(Exciter=circA)
ant = 
  reflectorParabolic with properties:

        Exciter: [1x1 circularArray]
         Radius: 0.1500
    FocalLength: 0.0750
     FeedOffset: [0 0 0]
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]
     SolverType: 'MoM-PO'

show(ant)

Figure contains an axes object. The axes object with title reflectorParabolic antenna element, xlabel x (mm), ylabel y (mm) contains 15 objects of type patch, surface. These objects represent PEC, feed.

Version History

Introduced in R2018b