Neural Network for Digital Predistortion Design Online Training
This example shows how to create an online training neural network digital predistortion (NN-DPD) system to offset the effects of nonlinearities in a power amplifier (PA) by using a custom training loop. The custom training loop contains:
OFDM signal generation and
NN-DPD processing and
PA measurements using a VST and
Performance metric calculation and
Weight update control logic.
Introduction
The Neural Network for Digital Predistortion Design-Offline Training example focuses on the offline training of a neural network DPD. In the offline training system, once the training is done, the NN-DPD weights are kept constant. If the PA characteristics change, the system performance can suffer.
In an online training system, the NN-DPD weights can be updated based on predetermined performance metrics. This diagram shows the online training system. There are two NN-DPDs in this system. The NN-DPD-Forward is used in the signal path to apply digital predistortion to the signals. Input of this NN-DPD is the oversampled communication signal and its output is connected to the PA. NN-DPD-Train is used to update the NN-DPD weights and biases. Its input signal is the PA output and the training target is the PA input. As a result, the NN-DPD is trained as the inverse of the PA.
The following is the flow diagram of the online training system. When the system first starts running, NN-DPD weights are initialized randomly. As a result, the output of the NN-DPD is not a valid signal. Bypass NN-DPD-Forward until NN-DPD-Train trains to an initial valid state. Once the initialization is done, pass the signals through NN-DPD-Forward. Calculate normalized mean square error (NMSE) using the signal at the input of NN-DPD-Forward and at the output of the PA. If the NMSE is higher than a threshold, then update NN-DPD-Train weights and biases using the current frame's I/Q samples. Once the update finishes, copy the weights and biases to NN-DPD-Forward. If the NMSE is lower than the threshold, then do not update NN-DPD-Train. The NN-DPD updates are done asynchronously.
Generate Oversampled OFDM Signals
Generate OFDM-based signals to excite the PA. This example uses a 5G-like OFDM waveform. Set the bandwidth of the signal to 100 MHz. Choosing a larger bandwidth signal causes the PA to introduce more nonlinear distortion and yields greater benefit from the addition of the DPD. Generate six OFDM symbols, where each subcarrier carries a 16-QAM symbol, using the ofdmmod
and qammod
function. Save the 16-QAM symbols as a reference to calculate the EVM performance. To capture the effects of higher order nonlinearities, the example oversamples the PA input by a factor of 5.
bw = 100e6; % Hz symPerFrame = 6; % OFDM symbols per frame M = 16; % Each OFDM subcarrier contains a 16-QAM symbol osf = 5; % oversampling factor for PA input % OFDM parameters ofdmParams = helperOFDMParameters(bw,osf); numDataCarriers = (ofdmParams.fftLength - ofdmParams.NumGuardBandCarrier - 1); nullIdx = [1:ofdmParams.NumGuardBandCarrier/2+1 ... ofdmParams.fftLength-ofdmParams.NumGuardBandCarrier/2+1:ofdmParams.fftLength]'; Fs = ofdmParams.SampleRate; % Random data x = randi([0 M-1],numDataCarriers,symPerFrame); % OFDM with 16-QAM in data subcarriers qamRefSym = qammod(x, M); dpdInput = single(ofdmmod(qamRefSym/osf,ofdmParams.fftLength,ofdmParams.cpLength, ... nullIdx,OversamplingFactor=osf));
NN-DPD
The NN-DPD has three fully connected hidden layers followed by a fully connected output layer. Memory length and degree of nonlinearity determine the input length, as described in the Power Amplifier Characterization example. Set the memory depth to 5 and degree of nonlinearity to 5. Custom training loops require dlnetwork
(Deep Learning Toolbox) objects. Create a dlnetwork
object for NN-DPD-Forward and another for NN-DPD-Train.
memDepth = 5; % Memory depth of the DPD (or PA model) nonlinearDegree = 5; % Nonlinear polynomial degree inputLayerDim = 2*memDepth+(nonlinearDegree-1)*memDepth; numNeuronsPerLayer = 40; layers = [... featureInputLayer(inputLayerDim,'Name','input') fullyConnectedLayer(numNeuronsPerLayer,'Name','linear1') leakyReluLayer(0.01,'Name','leakyRelu1') fullyConnectedLayer(numNeuronsPerLayer,'Name','linear2') leakyReluLayer(0.01,'Name','leakyRelu2') fullyConnectedLayer(numNeuronsPerLayer,'Name','linear3') leakyReluLayer(0.01,'Name','leakyRelu3') fullyConnectedLayer(2,'Name','linearOutput')]; netTrain = dlnetwork(layers); netForward = dlnetwork(layers);
The input to the NN-DPD is preprocessed as described in Neural Network for Digital Predistortion Design-Offline Training example. Create input preprocessing objects for both NN-DPDs.
inputProcTrain = helperNNDPDInputLayer(memDepth,nonlinearDegree); inputProcForward = helperNNDPDInputLayer(memDepth,nonlinearDegree);
Since dlnetTrain
and dlnetForward
are not trained yet, bypass the NN-DPD.
dpdOutput = dpdInput;
Power Amplifier
Choose the data source for the system. This example uses an NXP™ Airfast LDMOS Doherty PA, which is connected to a local NI™ VST, as described in the Power Amplifier Characterization example. If you do not have access to a PA, run the example with saved data or simulated PA. The simulated PA uses a neural network PA model, which is trained using data captured from the PA using an NI VST. For more information, see the Data Preparation for Neural Network Digital Predistortion Design example.
dataSource = "Simulated PA";
Pass the signal through the PA and measure the output signal using an NI VST. Lower target input power values can cause less distortion.
if strcmp(dataSource,"NI VST") targetInputPower = 5; % dBm VST = helperVSTDriver('VST_01'); VST.DUTExpectedGain = 29; % dB VST.ExternalAttenuation = 30; % dB VST.DUTTargetInputPower = targetInputPower; % dBm VST.CenterFrequency = 3.7e9; % Hz % Send the signals to the PA and collect the outputs paOutput = helperNNDPDPAMeasure(dpdOutput,Fs,VST); elseif strcmp(dataSource,"Simulated PA") load paModelNN.mat netPA memDepthPA nonlinearDegreePA scalingFactorPA inputProcPA = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA); inputProcPAMP = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA); X = process(inputProcPA,dpdOutput*scalingFactorPA); Y = predict(netPA,X); paOutput = complex(Y(:,1), Y(:,2)); paOutput = paOutput / scalingFactorPA; else load nndpdInitTrainingData paOutput dpdInput dpdOutput = dpdInput; end
Custom Training Loop
Create a custom training loop to train NN-DPD-Train to an initial valid state. The custom training loop has these parts:
For-loop over epochs
Mini-batch queue to handle mini-batch selection
While-loop over mini-batches
Model gradients, state, and loss evaluation
Network parameter update
Learning rate control
Training information logging
Run the epoch loop for maxNumEpochs
. Set the mini-batch size to miniBatchSize
. Larger values of mini-batch size yields to faster training but can require a larger learning rate. Set the initial learning rate to initLearnRate
and update the learning rate each learnRateDropPeriod
number of epochs by a factor of learnRateDropFactor
. Also, set a minimum learning rate value to prevent training from nearly stopping.
% Training options maxNumEpochs = 40; miniBatchSize = 4096; % I/Q samples initLearnRate = 2e-2; minLearnRate = 1e-5; learnRateDropPeriod = 20; % Epochs learnRateDropFactor = 0.2; iterationsPerBatch = floor(length(dpdOutput)/miniBatchSize);
References [1] and [2] describe the benefit of normalizing the input signal to avoid the gradient explosion problem and ensure that the neural network converges to a better solution. Normalization requires obtaining a unity standard deviation and zero mean. For this example, the communication signals already have zero mean, so normalize only the standard deviation. Later, you denormalize the NN-DPD output values by using the same scaling factor.
scalingFactor = 1/std(dpdOutput);
Preprocess the input and output signals.
trainInputMtx = process(inputProcTrain, ...
paOutput*scalingFactor);
trainOutputBatchC = dpdOutput*scalingFactor;
trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)];
Create two arrayDatastore
object
s and combine them to represent the input and target relationship. dsInput
stores the input signal, X
, and dsOutput
stores the target signals, T, for the NN-DPD-Train.
dsInput = arrayDatastore(trainInputMtx, ... IterationDimension=1,ReadSize=miniBatchSize); dsOutput = arrayDatastore(trainOutputBatchR, ... IterationDimension=1,ReadSize=miniBatchSize); cds = combine(dsInput,dsOutput);
Create a minibatchqueue
(Deep Learning Toolbox) object to automate the mini-batch fetching. The first dimension is the time dimension and is labeled as batch B to instruct the network to interpret every individual timestep as an independent observation. The second dimension is the features dimension and is labeled as C. Since the data size is small, the training loop runs faster on the CPU. Set OutputEnvironment
for both input and target data as 'cpu'
.
mbq = minibatchqueue(cds, ... MiniBatchSize=miniBatchSize, ... PartialMiniBatch="discard", ... MiniBatchFormat=["BC","BC"], ... OutputEnvironment={'cpu','cpu'});
For each iteration, fetch input and target data from the mini-batch queue. Evaluate the model gradients, state, and loss using the dlfeval
(Deep Learning Toolbox) function with the custom modelLoss
function. Then update the network parameters using the Adam optimizer function, adamupdate
(Deep Learning Toolbox). For more information on custom training loops, see Define Custom Training Loops, Loss Functions, and Networks (Deep Learning Toolbox).
When running the example, you have the option of using a pretrained network by setting the trainNow
variable to false
. Training is desirable to match the network to your simulation configuration. If using a different PA, signal bandwidth, or target input power level, retrain the network. Training the neural network on an Intel® Xeon® W-2133 CPU @ 3.60GHz takes less than 3 minutes.
trainNow = true; if trainNow % Initialize training progress monitor monitor = trainingProgressMonitor; monitor.Info = ["LearningRate","Epoch","Iteration"]; monitor.Metrics = "TrainingLoss"; monitor.XLabel = "Iteration"; groupSubPlot(monitor,"Loss","TrainingLoss"); monitor.Status = "Running"; plotUpdateFrequency = 10; % Initialize training loop averageGrad = []; averageSqGrad = []; learnRate = initLearnRate; iteration = 1; for epoch = 1:maxNumEpochs shuffle(mbq) % Update learning rate if mod(epoch,learnRateDropPeriod) == 0 learnRate = learnRate * learnRateDropFactor; end % Loop over mini-batches while hasdata(mbq) && ~monitor.Stop % Process one mini-batch of data [X,T] = next(mbq); % Evaluate model gradients and loss [lossTrain,gradients] = dlfeval(@modelLoss,netTrain,X,T); % Update network parameters [netTrain,averageGrad,averageSqGrad] = ... adamupdate(netTrain,gradients,averageGrad,averageSqGrad, ... iteration,learnRate); if mod(iteration,plotUpdateFrequency) == 0 updateInfo(monitor, ... LearningRate=learnRate, ... Epoch=string(epoch) + " of " + string(maxNumEpochs), ... Iteration=string(iteration)); recordMetrics(monitor,iteration, ... TrainingLoss=10*log10(lossTrain)); end iteration = iteration + 1; end if monitor.Stop break end monitor.Progress = 100*epoch/maxNumEpochs; end if monitor.Stop monitor.Status = "User terminated"; else monitor.Status = "Done"; end else load offlineTrainedNNDPDR2023a netTrain learnRate learnRateDropFactor ... learnRateDropPeriod maxNumEpochs miniBatchSize scalingFactor ... symPerFrame monitor averageGrad averageSqGrad end
Online Training with HIL
Convert the previous custom training loop to an online training loop with hardware-in-the-loop processing, where the hardware is the PA. Make the following modifications:
Add OFDM signal generation.
Copy NN-DPD-Train learnables to NN-DPD-Forward and apply predistortion using the forward function.
Send the predistorted signal to PA and measure the output.
Compute the performance metric, which is NMSE.
If the performance metric is out of spec, then update the NN-DPD-Train learnables with the custom loop shown in the Custom Training Loop section without epoch processing.
Add the memory polynomial based DPD for comparison using
comm.DPDCoefficientEstimator
andcomm.DPD
System objects.
Run the online training loop for maxNumFrames
frames. Set the target NMSE to targetNMSE
dB with a margin of targetNMSEMargin
dB. The margin creates a hysteresis where the training is stopped if NMSE is less than targetNMSE-targetNMSEMargin
and started if NMSE is greater than targetNMSE+targetNMSEMargin
.
maxNumFrames = 200; % Frames if strcmp(dataSource,"NI VST") || strcmp(dataSource,"Saved data") targetNMSE = -33.5; % dB else targetNMSE = -30.0; % dB end targetNMSEMargin = 0.5; % dB
Initialize NN-DPD-Forward.
netForward.Learnables = netTrain.Learnables;
Configure the learning rate schedule. Start with learnRate
and drop by a factor of learnRateDropFactor
every learnRateDropPeriod
frames.
learnRateDropPeriod = 100; learnRateDropFactor = 0.5; learnRate = 0.0001;
Initialize the memory polynomial based DPD.
polynomialType = "Memory polynomial"; estimator = comm.DPDCoefficientEstimator( ... DesiredAmplitudeGaindB=0, ... PolynomialType=polynomialType, ... Degree=nonlinearDegree, ... MemoryDepth=memDepth, ... Algorithm='Least squares'); coef = estimator(dpdOutput,paOutput);
Warning: Rank deficient, rank = 9, tol = 1.113136e-03.
dpdMem = comm.DPD(PolynomialType=polynomialType, ...
Coefficients=coef);
If trainNow
is true
and dataSource
is not "Saved data"
, run the online training loop.
trainNow = false; if trainNow && ~strcmp(dataSource,"Saved data") % Turn off warning for the loop warnState = warning('off','MATLAB:rankDeficientMatrix'); clup = onCleanup(@()warning(warnState)); % Initialize training progress monitor monitor = trainingProgressMonitor; monitor.Info = ["LearningRate","Frames","Iteration"]; monitor.Metrics = ["TrainingLoss","NMSE","NMSE_MP"]; monitor.XLabel = "Iteration"; groupSubPlot(monitor,"Loss","TrainingLoss"); groupSubPlot(monitor,"System Metric",{"NMSE","NMSE_MP"}); monitor.Status = "Running"; plotUpdateFrequency = 10; % Reset input preprocessing objects reset(inputProcTrain); reset(inputProcForward); numFrames = 1; iteration = 1; maxNumIterations = maxNumFrames*iterationsPerBatch; updateFrameCounter = 1; while numFrames < maxNumFrames && ~monitor.Stop % Generate OFDM I/Q samples x = randi([0 M-1], numDataCarriers, symPerFrame); qamRefSym = qammod(x, M); dpdInput = single(ofdmmod(qamRefSym/osf,ofdmParams.fftLength,ofdmParams.cpLength, ... nullIdx,OversamplingFactor=osf)); dpdInputMtx = process(inputProcForward,dpdInput*scalingFactor); % Send one frame of data to NN-DPD X = dlarray(dpdInputMtx, "BC"); % B: batch size; C: number of features (dimension in input layer of the neural network) [Y,~] = forward(netForward,X); dpdOutput = (extractdata(Y))'; dpdOutput = complex(dpdOutput(:,1), dpdOutput(:,2)); % Normalize output signal dpdOutput = dpdOutput / scalingFactor; % Send one frame of data to memory polynomial DPD dpdOutputMP = dpdMem(dpdInput); % Send DPD outputs through PA if strcmp(dataSource,"NI VST") paOutput = helperNNDPDPAMeasure(dpdOutput,Fs,VST); paOutputMP = helperNNDPDPAMeasure(dpdOutputMP,Fs,VST); else % "Simulated PA" paInputMtx = process(inputProcPA,dpdOutput*scalingFactorPA); paOutput = predict(netPA,paInputMtx); paOutput = complex(paOutput(:,1), paOutput(:,2)); paOutput = paOutput / scalingFactorPA; paInputMtxMP = process(inputProcPAMP,dpdOutputMP*scalingFactorPA); paOutputMP = predict(netPA,paInputMtxMP); paOutputMP = complex(paOutputMP(:,1), paOutputMP(:,2)); paOutputMP = paOutputMP / scalingFactorPA; end % Compute NMSE nmseNN = helperNMSE(dpdInput, paOutput); nmseMP = helperNMSE(dpdInput, paOutputMP); % Check if NMSE is too large if updateNNDPDWeights(nmseNN,targetNMSE,targetNMSEMargin) % Need to update the weights/biases of the neural network DPD % Preprocess input and output of the NN trainInputMtx = process(inputProcForward, ... paOutput*scalingFactor); trainOutputBatchC = dpdOutput*scalingFactor; trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)]; % Create combined data store dsInput = arrayDatastore(trainInputMtx, ... IterationDimension=1,ReadSize=miniBatchSize); dsOutput = arrayDatastore(trainOutputBatchR, ... IterationDimension=1,ReadSize=miniBatchSize); cds = combine(dsInput,dsOutput); % Create mini-batch queue for the combined data store mbq = minibatchqueue(cds, ... MiniBatchSize=miniBatchSize, ... PartialMiniBatch="discard", ... MiniBatchFormat=["BC","BC"], ... OutputEnvironment={'cpu','cpu'}); % Update learning rate based on the schedule if mod(updateFrameCounter, learnRateDropPeriod) == 0 ... && learnRate > minLearnRate learnRate = learnRate*learnRateDropFactor; end % Loop over mini-batches while hasdata(mbq) && ~monitor.Stop % Process one mini-batch of data [X,T] = next(mbq); % Evaluate the model gradients, state and loss [lossTrain,gradients] = dlfeval(@modelLoss,netTrain,X,T); % Update the network parameters [netTrain,averageGrad,averageSqGrad] = ... adamupdate(netTrain,gradients,averageGrad,averageSqGrad, ... iteration,learnRate); iteration = iteration + 1; if mod(iteration,plotUpdateFrequency) == 0 && hasdata(mbq) % Every plotUpdateFrequency iterations, update training monitor updateInfo(monitor, ... LearningRate=learnRate, ... Frames=string(numFrames) + " of " + string(maxNumFrames), ... Iteration=string(iteration) + " of " + string(maxNumIterations)); recordMetrics(monitor,iteration, ... TrainingLoss=10*log10(lossTrain)); monitor.Progress = 100*iteration/maxNumIterations; end end netForward.Learnables = netTrain.Learnables; % Update memory polynomial DPD coef = estimator(dpdOutputMP,paOutputMP); dpdMem.Coefficients = coef; updateFrameCounter = updateFrameCounter + 1; else iteration = iteration + iterationsPerBatch; end updateInfo(monitor, ... LearningRate=learnRate, ... Frames=string(numFrames)+" of "+string(maxNumFrames), ... Iteration=string(iteration)+" of "+string(maxNumIterations)); recordMetrics(monitor, iteration, ... TrainingLoss=10*log10(lossTrain), ... NMSE=nmseNN, ... NMSE_MP=nmseMP); monitor.Progress = 100*numFrames/maxNumFrames; numFrames = numFrames + 1; end if monitor.Stop monitor.Status = "User terminated"; else monitor.Status = "Done"; end if strcmp(dataSource,"NI VST") release(VST) end clear clup else % Load saved results load onlineTrainedNNDPDR2023a netTrain learnRate learnRateDropFactor ... learnRateDropPeriod maxNumEpochs miniBatchSize scalingFactor ... symPerFrame monitor averageGrad averageSqGrad load onlineStartNNDPDPAData dpdOutput dpdOutputMP paOutput paOutputMP qamRefSym nmseNN nmseMP end
The online training progress shows that the NN-DPD can achieve about 7 dB better average NMSE as compared to the memory polynomial DPD. Horizontal regions in the Loss plot show the regions where the NN-DPD weights were constant.
Compare Neural Network and Memory Polynomial DPDs
Compare the PA output spectrums for the NN-DPD and memory polynomial DPD. Plot the power spectrum for PA output with the NN-DPD and memory polynomial DPD. The NN-DPD achieves more sideband suppression as compared to the memory polynomial DPD.
pspectrum(paOutput,Fs,'MinThreshold',-120) hold on pspectrum(paOutputMP,Fs,'MinThreshold',-120) hold off legend("NN-DPD","Memory polynomial") title("Power Spectrum of PA Output")
Calculate ACPR and EVM values and show the results. The NN-DPD achieves about 6 dB better ACPR and NMSE as compared to the memory polynomial DPD. The percent EVM for the NN-DPD is about half of the memory polynomial DPD.
acprNNDPD = helperACPR(paOutput,Fs,bw); acprMPDPD = helperACPR(paOutputMP,Fs,bw); evmNNDPD = helperEVM(paOutput,qamRefSym(:),ofdmParams); evmMPDPD = helperEVM(paOutputMP,qamRefSym(:),ofdmParams); % Create a table to display results evm = [evmMPDPD;evmNNDPD]; acpr = [acprMPDPD;acprNNDPD]; nmse = [nmseMP; nmseNN]; disp(table(acpr,nmse,evm, ... 'VariableNames', ... {'ACPR_dB','NMSE_dB','EVM_percent'}, ... 'RowNames', ... {'Memory Polynomial DPD','Neural Network DPD'}))
ACPR_dB NMSE_dB EVM_percent _______ _______ ___________ Memory Polynomial DPD -33.695 -27.373 3.07 Neural Network DPD -39.237 -33.276 1.5996
Further Exploration
This example demonstrates how to train an NN-DPD in a hardware-in-the-loop (HIL) setting using custom training loops and loss functions. For the given PA, target input power level, and exciting signal, the NN-DPD provides better performance than memory polynomial DPD.
Try changing the number of neurons per layer, number of hidden layers, and target input power level and see the effect of these parameters on the NN-DPD performance. You can also try different input signals, such as OFDM signals with different bandwidth. You can also generate standard-specific signals using the Wireless Waveform Generator app.
References
[1] J. Sun, J. Wang, L. Guo, J. Yang and G. Gui, "Adaptive Deep Learning Aided Digital Predistorter Considering Dynamic Envelope," IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4487-4491, April 2020, doi: 10.1109/TVT.2020.2974506.
[2] J. Sun, W. Shi, Z. Yang, J. Yang and G. Gui, "Behavioral Modeling and Linearization of Wideband RF Power Amplifiers Using BiLSTM Networks for 5G Wireless Systems," in IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 10348-10356, Nov. 2019, doi: 10.1109/TVT.2019.2925562.
Appendix: Helper Functions
Signal Measurement and Input Processing
Performance Evaluation and Comparison
Local Functions
Model gradients and loss
function [loss,gradients,state] = modelLoss(net,X,T) %modelLoss Mean square error (MSE) loss % [L,S,G] = modelLoss(NET,X,Y) calculates loss, L, state, S, and % gradient, G, for dlnetwork NET for input X and target output T. % Output of dlnet using forward function [Y,state] = forward(net,X); loss = mse(Y,T); gradients = dlgradient(loss,net.Learnables); loss = extractdata(loss); end
Check if NN-DPD weights needs to be updated
function flag = updateNNDPDWeights(nmse,targetNMSE,targetNMSEMargin) %updateNNDPDWeights Check if weights need to be updated % U = updateNNDPDWeights(NMSE,TARGET,MARGIN) checks if the NN-DPD weights % need to be updated based on the measured NMSE value using the target % NMSE, TARGET and target NMSE margin, MARGIN. MARGIN ensures that the % update flag does not change due to measurement noise. persistent updateFlag if isempty(updateFlag) updateFlag = true; end if updateFlag && (nmse < targetNMSE - targetNMSEMargin) updateFlag = false; elseif ~updateFlag && (nmse > targetNMSE + targetNMSEMargin) updateFlag = true; end flag = updateFlag; end
See Also
Functions
adamupdate
(Deep Learning Toolbox) |dlfeval
(Deep Learning Toolbox) |featureInputLayer
(Deep Learning Toolbox) |fullyConnectedLayer
(Deep Learning Toolbox) |reluLayer
(Deep Learning Toolbox) |trainNetwork
(Deep Learning Toolbox) |trainingOptions
(Deep Learning Toolbox) |ofdmmod
|ofdmdemod
|qammod
|qamdemod
Objects
arrayDatastore
|dlnetwork
(Deep Learning Toolbox) |minibatchqueue
(Deep Learning Toolbox) |comm.DPD
|comm.DPDCoefficientEstimator
|comm.EVM
|comm.ACPR